1. (6 points) Let T be the period, R the amplitude, and θ the phase of the function

$$u(t) = \cos(3t) + \sin(3t).$$

Then

- (a) $T = 3/(2\pi)$, R = 1, $\theta = 0$
- (b) $T = 6\pi$, $R = \sqrt{2}$, $\theta = \pi$
- (c) $T = 2\pi/3$, R = 1, $\theta = \pi$
- (d) $T = 2\pi/3$, $R = \sqrt{2}$, $\theta = \pi/4$

2. (6 points) Let y(t) be any solution of the differential equation

$$y'' + 2y' + y = 1.$$

Then

- (a) $\lim_{t\to+\infty} y(t) = 0$
- (b) $\lim_{t\to+\infty} y(t) = +\infty$
- (c) $\lim_{t\to+\infty} y(t) = 1$
- (d) $\lim_{t\to+\infty} y(t)$ cannot be determined

3. (6 points) A suitable form for a particular solution y(t) to the differential equation

$$y'' + 2y' + 2y = t\cos(2t)$$

is:

- (a) $Ae^{-t}\cos(t) + Be^{-t}\sin(t)$
- (b) $At \sin(2t) + Bt \cos(2t)$
- (c) $(A_1t + A_2)\sin(2t) + (B_1t + B_2)\cos(2t)$
- (d) $(A_1t^3 + A_2t^2)\sin(2t) + (B_1t^3 + B_2t^2)\cos(2t)$

- 4. (6 points) A spring is stretched L=0.1 m by an object of mass m=1 kg. The system is set in motion at time t=0 by an external force of $F(t)=\cos(kt)$ Newtons. Assume that there is no damping force and that g=10 m/sec². For which value of k does resonance occur:
 - (a) $k = \sqrt{10}$
 - (b) k = 10
 - (c) k = 100
 - (d) resonance never occurs

5. (6 points) Find the inverse Laplace transform of

$$F(s) = \frac{s}{s^2 + 2s + 2}$$

- (a) $e^{-t}(\cos(t) + \sin(t))$
- (b) $e^{-t}(\cos(t) \sin(t))$
- (c) $e^{-t}\cos(t)$
- (d) $e^{-t}(\cos(t) 2\sin(t))$

 $6.\ (12\ points)$ Find the Laplace transform of

$$f(t) = \begin{cases} 3 & 0 \le t < 5 \\ t & 5 \le t \end{cases}$$

MATH 250 -Second Midterm Exam-

7. (13 points) Find the general solution to the differential equation

$$x^2y'' + 3xy' + y = 0 \qquad x > 0$$

given that $y = x^{-1}$ is a solution.

8. (18 pts) Find the general solution of (a), (b)

$$(a) y'' + 4y = \sin(2t)$$

(b)
$$y'' - 6y' + 9y = 0$$

(c) Give the form of a particular solution of $y'' - 6y' + 9y = e^{3t}$. Do not solve for it!

9. (12 points) Consider the non-homogeneous linear differential equation

$$y'' + p(t)y' + q(t)y = g(t)$$
 (1)

where p, q, g are continuous functions.

(a) If $y_1(t)$ and $y_2(t)$ are solutions of (1) show that $w(t) = y_1(t) - y_2(t)$ is a solution of the corresponding homogeneous equation y'' + p(t)y' + q(t)y = 0.

(b) Suppose that

$$y_1(t) = e^t$$
. $y_2(t) = e^t + \cos t$. $y_3(t) = e^t + \sin t$

are three solutions of the non-homogeneous equation (1). Find the general solution of (1).

- 10. (15 points) Suppose a mass-spring system has mass m=1 kg, damping constant $\gamma=4$ kg/sec, and spring constant k=3 kg/sec². Assume that at time zero, the mass is released with the spring compressed 2 cm from the mass's equilibrium position, and an instantaneous velocity of 5 cm/sec in the direction of spring decompression is imparted upon the mass.
 - (a) Write an initial value problem describing this situation.
 - (b) Solve your problem in (a) for the equation of motion.
 - (c) How many times does the mass cross the equilibruim position?