Multiple Choice Section

- 1. (5 points) Which of the following ordinary differential equations is linear of the second order?
 - (a) y'' + 4yy' = 0
 - $(b)t^2y'' + ty' y = \ln t$
 - $(c) (y')^2 + 2y = 0$
 - (d) $t^2 + y' = e^{-t}$

- 2. (5 points) Which of the following will be an integrating factor for the differential equation
- \checkmark (a) $\frac{1}{t^2}$
 - (b) e^{-2t}
 - (c) $-t^2$
 - (d) -2t

 $ty' - 2y = 2\cos 2t?$

$$y' - \frac{z}{t}y = \frac{2 cozc}{t}$$

$$\int_{-\frac{2}{t}}^{2} dt - 2h(t) = t^{-2}$$

3. (5 points) Find the maximal interval in which the existence and uniqueness of the solution to the following initial value problem is guaranteed:

$$(\sin t)y' + \frac{1}{t-1}y = \frac{t}{t+1}, \qquad y(2) = 3.$$

- (a) $(0,\pi)$
- **(b)** (0, 2)
- (c) $(-1, \pi)$
- \checkmark (d) $(1, \pi)$

y' + (sit)(t-1) y = t (t+1) sint

4. (5 points) Find a second order linear differential equation with constant coefficients to which the following functions are solutions:

(a)
$$y'' - y' - 2y = 0$$

(b)
$$y'' + 2y' - 3y = 0$$

(c)
$$y'' + y' - 2y = 0$$

(d)
$$y'' + y' + 2y = 0$$

$$y_1(t) = e^{-2t}, \quad y_2(t) = e^t.$$

$$(r+2)(r-1)=0$$

5. (5 points) Which of the following is the direction field for the differential equation y' = y - t?

6. (5 points) Consider the following two pairs of solutions:

$$y_1(t) = e^t$$

$$y_2(t) = e^{t+1}$$

$$z_1(t) = \sin t$$

$$z_2(t) = \sin(2t)$$

Which of the following is true?

- (a) Both of these pairs form fundamental sets of solutions.
- (b) Only the second pair forms a fundamental set of solutions.
 - (c) Only the first pair forms a fundamental set of solutions.
 - (d) Neither pairs form fundamental sets of solutions.

MATH 250 Fall 2005 -MidTerm Exam 1-

Partial Credit Section

7. (a) (10 points) Solve the initial value problem

$$y' = \frac{x^3 + 1}{yx^2 - x^2}, \qquad y(1) = 0.$$

Write your answer y as an explicit function of x.

$$\frac{dy}{dx} = \frac{x^{3}+1}{(y-1)x^{2}}, \ y(1)=0$$

$$\int (y-1)dy = \int \frac{x^{3}+1}{x^{2}} dx = \int x + \frac{1}{x^{2}} dx \qquad \frac{y^{2}-y}{z} - \frac{x^{2}}{z} - \frac{1}{x} + C_{1}$$

$$\frac{1}{2}(y-1)^{2} = \frac{x^{2}}{z} - \frac{1}{x} + C$$

$$\frac{1}{2}(y-1)^{2} = x^{2} - \frac{1}{x} + C_{2}$$

$$(y-1)^{2} = x^{2} - \frac{1}{x} + C_{2}$$

$$y(1)=0 \Rightarrow 1 = 1-2+C_{2} \quad C_{2}=2$$

$$y-1 = \pm \sqrt{x^{2}-\frac{1}{x}+2}, \quad x \quad y=1 \pm \sqrt{x^{2}-\frac{1}{x}+2}$$

$$y(1)=0 \Rightarrow chorse - sign. \quad y=1-\sqrt{x^{2}-\frac{1}{x}+2}.$$

(b) (5 points) Find the maximal possible interval (a, b) on which the above solution is valid. If it is difficult to solve for a or b without a calculator, you may describe it as a zero of a certain function.

Vertical tangent at y=0, so $x^2-\frac{2}{x}+z=0$. Want (a,b) containing 1 Let $f(x)=x^2-\frac{2}{x}+2$ f(1)=1-2+z=170. If $f(x)=2x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ $f(x)=x+\frac{2}{x^2}$ 8. (20 points) A tank initially contains 60 gal of pure water. Sweet water containing 1 lb of sugar per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at the same rate.

(a) (13 points) Set up and solve an initial value problem for the amount of sugar Q at any time t.

(b) (7 points) Find an instant of time T when the concentration of the sugar is 1/2 lb per gal.

Concentration =
$$\frac{Q(t)}{60} = 1 - e^{-\frac{1}{30}t} = \frac{1}{2}$$

 $e^{-\frac{1}{30}t} = \frac{1}{2}$
 $-\frac{1}{30}t = \ln \frac{1}{2} = -\ln 2$ $t = 30 \cdot \ln 2$ m.in.

9. (20 points) Consider the following autonomous equation:

$$y'=y^2-4y.$$

(a) (3 points) Sketch the graph of $f(y) = y^2 - 4y$. = $\frac{1}{2}(\frac{1}{2} - \frac{1}{4})$

(b) (6 points) Find the critical points and classify equilibrium solutions for this differential equation.

(c) (3 points) Find inflection points.

Question 9 continued.

(d) (4 points) Sketch the graphs of several solutions, making sure you have at least one graph representing each type.

(e) (4 points) Find the limit as $t\to\infty$ of the solution satisfying the initial condition y(1)=3, without solving the equation.

10. (a) (10 points) Find the general solution to the second order differential equation

$$y'' + y' - 2y = 0.$$
Char eqn $r^2 + r - 2 = 0$. $(r+2)(r-1) = 0$.
$$r = -2, 1$$

$$y_1 = e^{-2t}, \quad y_2 = e^{t}$$

$$2 + 2$$
Gen'l soln $y = c_1 e^{-2t} + c_2 e^{t}$.

(b) (5 points) Find the value β such that the solution in (a) satisfying the initial conditions

$$y(0) = 3, \qquad y'(0) = \beta$$

remains finite as the independent variable $t \to \infty$.

Since
$$e^{t} \rightarrow \infty$$
 and $e^{-2t} \rightarrow 0$ as $t \rightarrow \infty$, in order that y remains bounded, we must have $Cz = 0$. So $y = C_1 e^{-2t}$.

 $y(0) = 3 \implies C_1 = 3$.

 $y'(0) = -6e^{-2t}$.

 $y'(0) = -6 = \beta$.