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5, VECTOR-VALUED MBASUEES

- 5.1 S~ADDITIVE MEASURES. e

5,1.1 Let & ©be any set, let X be a Banach wa;:a,_aaﬁ ler f£:8

be eny bounded function.
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Let f£%:x* —s»%n{ﬁ') be '::ﬁé natural "adﬁoint" defiﬁed by

5™ 106) = 2" (5)), & €%, 8 €8);

%, @ * “ ‘
i€e, £ (x)=x of, Then £ is continuvous and linear

wich JE] = fgl_.

o o i HH N,
Ae 2 bounded linesr ¢pevator, £ hse an adjolnt

£ m{8) - X  given by

@165 = v@ @

’ * , % .
(v € m{8) , :z* &‘xﬁ}, ice., £ *%:?f} = 4 p f*e 4 for any

‘ ek , . vik %

adjoint, £  is continuous, limear, and [[£ || = £ || = [€} . .

; Rk ko # ,
Moxreover, f is weak ~to-weak continuous.

" ,
There exiet natural maps {"):8 = m(g} and
{("3:8 - X *, the second being an iscmetric isomorphism onto

® ) % k.
% which is weak dense im X  (sen Yo As for the first,
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note that for every s in 5, & is & positive linesr functional
of ﬁom one on m(S}u Moreover, by the aeparatioﬁ theorem 4t is

‘ . * ; . ‘
easily seen that ?ﬁk (§) is precisely the set of all positive -
‘Linear functionals of worm one on w(S). It follows from
i Wl . ke , D
that m(S) ie the linear span of co ° (S). Finally, the outside

of the following disgram commutes.

f*m
% : ik
&
£ %

5.,1.2 THEOREM. Let §, X, and £:5 X be as sbove. Then the followiig

four statements are &quivaimts

{4) £(8) is condirionslly weskly compact in X.

. Wik *® ik #
(14) £ m(S8) - ¥  takes its range In X.

O R
(1) £3% - mis) is wesk -to-weak continuous.

' k, k. y . '
{v) (£ o) s | = 1} 1e {conditionally)weakly compact

L in m(s). .

| e

ket g F




PROOF, (i) = (di). Assume (i) and let K w co(f(8)). Then K

is weakly compact in X by . Hence £ 4s weakly compact

L

wede ; # dol ‘
dAn X and so K 4is weak compact dm X . Fer s in B,

doae * - ewr &3 %
£ (s) = £(s) € K. &ince £ is weak -weak contimuous,

*
HE P 4 -
M@ (@) cRcd |

* - ;
‘ince n(s)* 1s the linsar spen of Go'C (8), £ (m(®)) s

contained in- .

(44) = (441). Asswme (41), and suppose x: - weak

| dn XW. Then given v in m,(‘fs}mg
& P % T T
I e )] = £ @ Mx) - (£ ) = vig (x 31,

80 fg(rxi} -+ f*(xw) weakly iz m(8).
{141y = (iv) by Alaoglu's theorem.

‘ - o
(iv) = (i). Let {sn}l C€$ and %}1 © ¥ s . 8equences

with !lxleé 1, Vm, and suppose both iterated liuits
1im 1dm x (£
o Un G

and

o
Wity
#
»
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5.1.3

S’ﬁlﬁs

""“f&ﬁ."‘“
% e o
l%m 1%111 xm(ﬁ(an))

*® * ok
exist. Since x (f (a OE. -(f {x))., if (fiv)‘hai&as the
two Mmim mum: agma {by t:!m Ebarleim—-?smmaa t:hwrem A ’;a_‘»
But it tzha two limits xmmt almys agme, thﬁm (i) mast hold

(again by 0

REMARK. It is clear ¢hat the theorem rewsins walid if w(8) |
e _ % =

is replaced by any cloged subspace Y for which x o £ 4s

in Y for all xﬁ% in %ﬂ. Moreover, Y can then be given

any equivalent norm.

if piA + X ds 8 finitely sdditive messurs, them & gontrel.

measure for . 4 is e member A of ba({A) such that | is

absolutely continuous with respect to |h}. S

COROLLARY. Let u:A -+ X be finitely additive. Then the

following five statements sre equivalent.

(1) wlh) is @mdmi@m:my ﬁa’aklis&@;pact '}3 x,;
(1) K= {x oplel 1,} e (conditionsl z} weekly

compact im bald).

& % %
(411} The funection x + x o @ 18 wesk -to-weak continuous

on X to ba(A),
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(iv) u is s-additive on A.

{v) There exists a control measure for u in ba(A).

Moreover, if (4) - {v) hold, ,hen the seL

*® % % % . L oy
A= {x €¢X:x]]s1, x o is a control messure

for u}
~ " o
ie dense in é{::s:’?s € X z{!x*ﬁ s 1)

PROOF. We ﬁirst observe that ‘aach of (1) ~ (V) iﬁplwg ‘that
i 4s bounded. (i) and (11) do by the miﬁ@m boundedness
pzzr’i&éipkle, and (i1i) = (i1). Also (iv) implies p is
bounded by 4.2.7, end (v) = (iv). Heuce 'famply‘aasm |

¢ 4s bounded. |

Since p is bounded, (1), *{iﬁ.)g andk (1i4) are equiwilent
by 5.1.2 (5.1.3). | |

By bob.b, (11); holds if gud only if K ié. uniformlsy o
s-additive, i.e., 1f and only if given & éigsj@int a@qmca»

{£} 40 A and ¢ > 0 there exists N such that

ok
l‘gﬁ&;é' .
sm‘%:%;i?’lf’ &




— (2~
nzN=|x o «,;:.{‘Eﬁ)if se, Vst
: wﬂ;a(ﬁn}ii s &

Hence (i1) = (iv), dnd similarly (iv) = (i1).

Agsin by 4.4.4, (i1) holds if and omly if there exista
a uniferm control measure A for Ks.d.e., there existe » dn

ha(A) such that ﬁbr_ every & » {0 there existe § > 0 with
: L e : @
W@ < 8=k oum| se, Vix]az
= ju®] s e

Hence (11) = VW‘} . and similarly (v} = (ii).

The last statement of the theorem follows from &.4.7.

5.1.6 COROLLARY. 1If u:Z - X i3 countsbly sdditive, them the

fmllow'in_g‘ statements hold.

{&} V@*CX) }ﬁ (:Onditlimﬁz.lx weaklx ‘C% act % ¥,

- g it e
() K= {x o puillx|l 81} is weakly compact in ca.dj).

4 N ®
(¢} The fumction x -+ x o p is weak -to-weak

o
continuous on X to ca(Z).




s

5.1.7
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X %k %
{x €X:lxl 81 end x o u 1s a control measure

' o ¥
for u} is dense in the unit ball of X .

(e) If X €ca(z) is such that
A (E) = 0 = p(E) = 0,

then u is absclutely continuous with respect

£ h

PROOF. If il - X 4s countably sdditive, then u is s-addicie.

Hence (a) = (d) hold by 5.1.5. If % € ca(l) is such that
aiki (E) = 0 = ;.g;(E}:" = 0, then X is & control measure for V}K‘@.‘.

and hence & uaiform control measure.

COROLLARY (Nikodfm). Suppose w2+ X is countably additive

for all =n, aad suppose W(E) = lim un(m exists for every E

‘is I. Then f{u } is uniformly countably additive gmd ¢

is countably additive.

PROOF. For each n, chéa&& ’hﬂ in ca(Z) such that Fa is

?sn-continﬁmus . Let

1 i “}‘-n'fg

e
el 2 3“‘*“ %‘n

Then each e ie A-continucus and so the Viteli-Hahn-3ake

theorem {3.48.8) ‘&,g»fxmm*

P (a3
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5.1.9

“"“‘/élﬂé -

In Chapter 4 we were able to carry over many of the results from

Chapter 3 about c.a. measures on o-algebras to s-additive

as the fundamental Vitali-Hahn-Saks theorem do noa~¢arry ovVeT.

Note that we weakened twc properties: (i) the domsins were

For the remainder of this section we consider the intermediate |
stage of conﬁiﬁeriag fin1te$y additivevmeaauxeé on o-algebras.
We shall see that the vitaliuﬂaha~$aka theorem and mel&tadf
xéauits remain Vﬁiid'in‘thiﬁ sattigg. The key result.ia"

the following . (as elways, I is o~algebra of subsets of

 fQ, and X 4s a Banach space.)

THEOREM. Let ““‘n}:ﬂ. be a sequence of s-additive finitely

measures on algebras. Example 4.4.8 shows however that such results

‘ anlyaalgebraé, and (11) the nmeasures were ounly finitely sdditive.

aéditiwe'ma&sgﬁaslgg Z to X, and let {gm}:#l be a digjoint

sequence in Z. Thﬁu khayafexists;ﬁzsuhsaquence {E%k};;l of

{Em}mwl such that every kﬂ gg‘gauntably~additive,gg the

T ¥ ¢ ™ 2 o A | ‘ W .

o-zlgebra ;: “En@k}k“l} generated by {E%lwl .

93003. By passing to control measures, we may assume without - .
loss of generality that the %n‘skare~nmaiwvaided~¢nd«nnaé

negative.

anmon,
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Let (.fio,w denote the Stone Completion of I (see
&3) Let L be an uncountable collection of infinite
subsets of ® such that any two members of J1 have finite
‘intemectiqm {The exis‘aeiice nf such & collection can be
proved by enumemti.ng the rationals a:x& taking, for each
irpational &, 4 sequence of distinct rationals wnvétgjm&

to a.) For every A in £, Ilet

e, = 0 foCU "fz;jn,,
‘ k=1 jzk
jeh

Then A,B €4, A ¢ B, implies C, 1 C, # ¢. Hence there

exists some A in 9 such that

R 3 ;
A, 00 € =0, Ve

s piatoes

where )sn &P

L denotes the unique extemsion of A0 o " to

a mwt:ably‘a&diﬁiva measure oOn -:?3(>A§}o let &4 = {m;ﬂ < my < oo}

and counsider the subagq;aence {Emk}k_‘l of {E m} el Wi have,

7 L M—::z L .
dm A (U E J)olimX o9 [e{U E )]
kvea gmk T4 ke P Jmlc mj "

=% o w"‘l(;:Ai = 0,

for every n, and it follows emeily that », 18 countably

additive on E({Enj}jaﬁﬁ :




5.1.10

J— JRAE
THEOREM. Let K be a set of finitely additive measures
w:Z -+ L, and suppose K k ie elementwise bounded on I;
i.e., for every E in I
sup |[M(E}]] < =.
heK '
Then K is uniformly bounded on I; i.&.,
sup sup [A(EM] < . »
EEZ M€K ' R

PROOF. If K is not uniformly bounded, then neither ie tie
, E S # o # . ,
set {x o MAER, x €X, x|l € 1}. Thus we may sisume

without loss of genevality that the messures are real-vajued.

Define 7 on & to [0,%] by

n(E) = sup sup |M®)].
Fel 4
Mote that }‘(El U Ez) -1 ‘n(ﬁ‘l} e ﬂ(Ez} ﬁgg m ﬁ:”& ;ﬁﬁ {5 I.

We are to show that n{8) < o,

We claim that 4f n(E) = » gnd M € R, ther there
ecists F in Z, FCEH, and A €K such that [M(P)| >M
and 7(EN\F) = -, For, if | T(E) = =, then there exists & C §

erd A in K such that




5.1.11

w"“/‘;l_“;’,w

iA@G)]| » M + sup |u(®)|.
WEK
Now = = (G U (E\G)) 5 n(G) + n(E\G), so tim‘t‘ either
N(6) = = or M(ENG) = w. If M(E\G) = =, take F=C.

If instesd T(G) = =, teke F = E\G, and mote that
Ay = PE)=AB) | & }mgsﬂ—hgaﬂ z M.

Hence the claim holds.

Now by the sbove, 1f T(R) = =, we can inductively define
& &i&joimﬁ'a&q!umae {En} in 2 and a sequence {k?{;} in K

such that |\ R{Eﬂ‘}i > n for avery n. By 5:.1.9, we may assune

that every A, 1is countably additive on Zg = E({E ﬁ»}

nﬁ)' ot »

then by 3.2.10, {\} is uniformly bounded on I, &
contradiction. Therefore we must have that 7{R) < =,

~ ) , ~
THEOREM. Let {x&,} be & sequence of s-additive finitely
: iR, == = : o

additive measures on L to X, and ,éuggow that for every .

E in I,

W(E) = lim u_(E)
el aid

exists. Then {pﬂ} is uniformly e-additive and p is

s-additive.

g




s~additive, then there exist

By 5.1.9, e may assume that every i
o By 5.1.7, {u |20, is

on the o~algebra 2
uniformly countably additive on I

K must be ugiifom&,y s-additive on Z.

— /SO0~

If ¥ 4s not uniformly

e disjoint sequence

[k K = {@ﬁ:f& ", 1,2910&}»
in K such that

E:WQQ

n L, and a seguence {v }

i

1
iE }mml

o Epl > 60 Voo
16 countably additive

+
Hence

0" Z?r{i{ﬁnk.' 2
contradicting (¥).

m é:_n; MKZ) cn‘l"ZQ & e u}f, then }
(B} + a{E; Zfox

COROLLARY. Zf % snd My
Kok W&ak%;i in ba(l) ﬁ%m 1L A LE; <+ ALE)

'y
evm:z' E in Z.
PROOF. (=) clearly.
ey, If % (B) + A(B) for every E dn I, then by
5.1.10, (A} is uniforaly bounded on 3, and by 5,1.13,
ive. Hemce by 4.4. &, {7‘- } :1;.

0, }' is uni.fomy s-additive.
B:;' the Eberleimﬁmuﬁm thevren,

conditionally weakiy £OBPACE.
wm:y mubew uence has mbaequance. mnmxging weakly, wnd

the limit in each case must be M.

“

st i
Cwdad p,



5.1.14

— 3/~

CTHEOREM. Let % be in ba (3), and for every =n let

B n:.;"l - X be finitely sdditive ari absclutely continuous

with respect to A, If for every E in 2,

W(E) = lim p (B)

fi-e

exists. then {gﬁ} ig uniformly sbsolutely continuous with

respect to  A. : ' : .

, PROOF. By ‘5;1.5, each B 1is s-additive. By B‘L.,m,

{%} is uniformly bounded, and by 5.1.11, {u } is uniforaly

; * ~ % %,
se-additive. Fence K= {x oy n=1,2,...5 % € X* e o= 1}
is uaiformly bounded end uniformly s-additive. Thue K
4is conditionally weakly compact by 4.4.4. Since k is &
contrel measure for X, it is a uniform control measure for X

by i&w’ﬁw?c

LEMMA. If K ig a bounded subset of ba(Z) which is not

uniformiy s-additive, then there exists & » U such that

for every & » 0 there }g 2 sequence {%} in X and a

disioint sequence ({E n} in Z¥ such that for every o

W lu (B > 6
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5:1.15

By (M, By

I v j._g_ not s~addic

o -
oun the space &

PROOF. Since K 4s net upiformly s-additive on §, theve

exists &, » 0, & disjnint sequenca {4} in 2, anda

squence {2 } in K such that

Ey 3.1.9, we may sssume without loes of gﬁnwﬁmw that Zvary
ﬁ%mi ‘ia countably &d&itﬁm on the c-algebra 2, zgm }Wl)n
= {% § {3} o1 s set amifmmly w—mﬁdimiw h %»
By 4.4.10, thare exists 6§ » 0 sveh thet for every b 0
there is & sequence At dm Eig,,, a0d ‘& dmﬁama senCe

B, dn 3;*:@ €%, sueh thst for every o

and

THEOREM, Let 2, + X be a bounded :&z»imly gidicive messure.

ive, ».‘heza th&?m eaxiam an iﬁamr Jhiﬁm P

im@ :{. I’zz fgm;, we cﬁm c:haese a aiajﬂ ne &mu@nce;

{Em}‘ in % such that ap(& = w{'Eﬂ}&, ﬁﬁ&l‘i’% ﬁw £ «‘5'

15

gegquoncs piven b fi ) =6 .
=R E 2L 9% ) wn
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,_,m,/r::t'x-;»

U

A

PR(JGF* £ v ig not s-additive, then the set

: {x o v % € < ,ix ﬁ g1} is not unifamly Enacldix.ive
%
Since v is boanded, there exists M such that |x o v|(R)sM

‘for all Illx I 1. By S.1. 1& there exists & > 0, a disjoinn

sequence {E_} 4n I, and a mquence {x } din the unit ball

of X such that
|x, o wED| > &
and

LI 8
lx_ o vl{U BYesy o
Let 3;.; . denote the dense au’b«spai:e. of & mnsistmgwéf
all fisite-valued sequences
n

g = ﬁx )
iy 1Ayt

where {&1””"’%} ie a partition of M. Define cpﬁ(a}

by

(a) w }j gv(u Ej)»
=1 jéA

L% % % |
Then ¢, ig linear. For = € X, x|l €1, we have

Sepprn

R




T

A fﬁ?yf’"’

gt = legdlx o vlCU B
‘ , fe=1 jéiki »

s llall lx" 0 vl (®) = fial

86 that P i continuous.

| ‘Now given m € N, choose A‘i puch thax; m € !&i . Then
. : I m ; m -

b toleddl = 13 Bx o w(U B
b g} ‘G g 3.““1 im '(jéA;g 3

2 ff"?'i x, © viﬁm‘)i - ‘!iﬁ Brpov ‘{3U Ej)§
™ ; 4= ; J

1 M’i.
0 du
; N P on ok e
2 g, s owEdl =lel I lx evi(U 2)
i P ; iy “ow “ T R P 3
e ; de=d o Jeay
i¥z

ol i@imiﬁ - lleli =, © v%é:ﬁ E,)

pajon

= lpy [5 - el

e ’
m
Taking the supremum over = gives

o . &

W \ ; o () o= I 2
logtll 2 sup g o vg(@l & el * 5

go that % 1s cn'e«-ztowma and @? is cantinmum

Since t; is dense in &, ®g extends to an isomorphism

of & dnto X.




'5,1.16 COROLLARY. For a Banach space X, the following two statements

are eguivalent.

{1) For every o-algebra I, every bounded finitely

additive measure uil -+ X dis s-addicive,

{2) X does not contaia an isomorphic copy of :&”.7‘

o amae that (1) = (23
Ry 4

¢

{13 by the theoren

4
note that v = ¢~

=3

]

+ ¢ given by w(8) =X s A CN) isa baum&@i

finftely additive measure which 1g not s-additive.

se‘pa:-aéée ' ' I ;
shieyowe, then for every c-slgebra X,

5.1.17

measure wil - X is s-additivs.
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5,2 THE PETTIS~ORLICZ THEOREM

5.2.1 A measure il +X is said to be weakly countably additive

§5.2.2

N - * * .
1f x o o is énuntably~nddxtiva~for all x € X . It1fo11aw9

from the uniform boundedneaa priucipla that guch a  ds

bounded. Alsag if W is such & measurn aad {E } ies e

disj@in: ﬁaquence~in s then

e e T ‘*ﬁg @)
® o1 " ™ XY w ] s i ¥
el T Cpml B 1§m . opel

£

so that p{ U E‘}~n wk -} w(E); i.e., i is countably

=l n=l

‘ad&itive into the weak topology. ciearly if b is avadditive and

weakly countably addirive. then it fe eountably ﬁuﬁf

In this section we prove ﬁhe,gawmrfﬂz‘thearem of Pettie
which says that if u is waakly countably aﬁdiﬁive then it

is amuntabiy additive. (Actuawly, this &aiiawe immediately fron
4,2.14, but we giva~an alternate proof hera.)

: o Ay 44 o -
LEMMA. & sequence {a( 5}ﬁnl in 47 converges in porm to Zure’

if and only if for all # in & with B, =0, 1, or -1, ¥4,

(n)
B.o
121 14

as n -+ =, In particular, for aequenceg,gg,ﬁl, weak and

LOrm CcOnvergence agree.




90263

e

By passing to &

such that ﬂu

PROOF.

then p.{m) =wk - ] x

\
o

-

FROOF. {=) clear.

Y ~ ‘
&), Supposa {rxc “} does pot converge in norm to eps

subaequance we may assume there exists gu» 0 ;

1 &8 ¢ for all u. &gain hy paszsing to ¢ e

subaequenee {usmg the Cantor diagonsl method) we can msm

~ sgn aé n) &gn rt(m} s ¥Yi.m.nm.
Let ﬁ - agu a{) for &il i. Then

¢ 5 la “*’u - )j 1‘“’1m }2 8ot o,

& contradiction.

LEMMA. 1If u,;z“ + X is weakly countably additive, then

W s counzably adéitive.

let x and let ¥ isnote

For each n, = B {al),

the closed linear span of {x } ; If E 18 & subiet of K,

., 18 dn ‘&’f,, ﬁam& we mjr as well ascume
n€k :
and thus that X is aepamble.

By‘ . the usir ball

: *®
of X is mef:rmable in the weak mpwlogy.

Let u, :X - ca‘(z ) be the natural "adjoiot™ of .
ok T B
We show that p 48 weak -weak continuous so that by 5.1.5,

¥ is s-additive and hence countably addﬁ.mwza




e,

.}'

dote that ,;{s:ea(zu) - 81' “given by
BT R ML

| e 11
4s an isow~tric isomorphism. We show ¢ o p  is veak -norm
~ | | ‘ | | T
continucus on the unit ball of X . By , this 4o~ "

‘ ‘ E o ® %

& L S ‘ ’ ‘ e i ‘

Y op i weak -yesk continuous on all of ¥’ For x &X
we have
-

Yo .g.*‘éxg,) = «zf.{x*‘ o) - W ‘(xi} }wl.

" R Cow * % L
Suppose {xm} ig in the rait bell of X% and xm - x weak .

& . e . o
We are to show [i{ {x: w3} ‘T(xj_)}idzﬁ 17 0 as m-~+ = GCiven B
8 4in £ with =2t o0E -1, Y¥i, we have

=

) ; Lty e % €
.‘ g% @i{(x: -x) () “,ﬁ}:ﬂ’?"‘ﬂ, -x (%) - z_m (ry = % ) x)

% ‘* S
® (% - x ) [(wk = %)~ wk § =3}
CHEE B IEC B}i”l 1 ot b

* 0.

: e e .
By the previous lemma, H{v(xm - % )(‘xi)‘}iwlﬁl -+ 0.




///m\

: | ﬁd&‘iuiv% Hence

5e2:5

5.2.4

THEOREM (Pettis). ILf £ is a o-algebra and il =X is

weakly countably additive, then u is countably additive.

PROOF. Let {E )" . be a disjoint sequence in z and define

wzm S by »

WA = vk - ] w(E) = M U E), (& cH).
v n‘gﬁ B mé& B :

Then v ds wmkly c@um:ably addﬁtive amd hme munt;ably

v = norm = § v({n}) = norm -~ T u(z).
el ‘ : gl

SQROLL&RY (Pﬁts:iw-i}rlmz) Let m bea ‘mmea in & Bamvich

‘ space X such that each aubserieb convargas weak;lv in ¥.

Then Zix@ mnvargas umondtiggally _'.5_._& BOTW.
PROCF. Exercise.

~ COROLLARY (Extension Thecrem). Let A be an al gahm, and Jet

i - X be countably additive on A, ?heu #  has an exmmims. |

oz wuntabiy addu:ivea measure p. E(A) + X if ami only if LE @ :m

: ﬁwadd/i&.‘i%, Moreover, :Z.n t:‘hai: case, for any E m by




e (e

;L%’E} - wk - l%m ,); ;.«(A ) 38
n=l B

where the limit is taken over u € F’A(E} {see 1.1.6}.

PROOF. (&) simece 5 must be s—additive.

(=), Let E be dn I. For cvery u = A }nul in

P, &’E}g let x_ = § u,(A J. Since ;;{A;} is mnﬁiz;iazxaliy
waakly compact, ﬂozjmbset of ix } convm:ges weakly in X

By 4.1.4, for every g in K . {x ~(x )}“ converges, and
hence {:c } itsalf converges weakiy to some alemnt whi,ch we
‘desmmy by p;(;E) . MNow by 4.l.4, x* o ¢ is the unique amemsian
of 'zz* ol to & countably additive measure on & to K

in ;@arr.icﬁlar, b is weakly'ewunmbly :adﬁitive, hem:é ‘comi:ably

aﬁdmivm

ooy
i g}‘}

o
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5.3.3.

_gﬁﬁe have

o I 4
50 in particular f_

~/# =

THE YOSIDA-HEWITT DECOMPOSITION THEOREM.

’i‘nrmghout, ¥ 4s = Banach 5608,

LEMMA. Suppose fn;s - ¥ has conditionelly ?eakl;g o

pact range for &il n and that I, =f %@M 85

&, Then § has conditionelly weekly compact range.

PROOF. Let 2 : X -m(S) amd £ : m(s) ~% be

as in §5.1, and similarly define £’ &nd £ for all'n.

e, 0 e = e 2 - o

v} = £ {y) 4= norm for all w

*  wx
in m(8) . 8ince each I

" tolges its values dn X, 80

doeg T and the lemme follows from 5.1.2.

If G 4s eny slgebra of sets, let sbe(G,X) dencte the
gpace 3;315”” 81l s-sdditive measures e (X b }C,,‘, with the uniform

norm. It follows from 5.3.1. that sbal{(,X) is & closed

gubspace of ba({i,X), hence is & Bamach space.

Let @ denote the collection of ail countsble (-partitions
o {En}ﬁ:i of . If m= (E) fsin P, 4if , isin
sba(G,%), end if E 4s in G, leb
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— S

g o
t. w(B) mn};’l w (ENE).

Then %:; b 18 finitely additive and hes its range in the

closure of t?:» renge of p. Thus tﬂ uw is again in sba(G,X)

‘end e wle < lffe. It follows tast ¢ : sbe(G,X) = ba(GX)

48 continuow and lineer with norm one.

By defidtion, if v and 7w, ere in P, then the
comp@si im:. t o %’ f‘is equal to t_ , where is
mT b e o

0

- the least OISO rﬂﬁmmenﬁ of the p&rtmim “.'L end Ty

Note that a member u of sba(ﬁ,x) ig counbably add.itive

iﬁ‘and.an:‘s;if t p,mg, for all w in P, Thus

g o
W oe it TR Q, LB 5
kit

operators whose set of coumon fixed points 1z the set of mmtﬁw.y

s commuteative semi»gz‘m;z of idempotent

ae‘iditwe ;szezmhem mf abn(ﬁ,i}.

LEMMA. Jet B ‘be & semﬁ,ﬁrcmg with 8 ccmpact ’tqpelogx such that

' multiyliaaﬁim is sep&ra‘be.‘% cantmuaus (i.e., for fixed

S0 im S5 the functions & e 805 and aé»» sso are each

contimous). Let F7 be a dense, commutative sub-semi-group

of ideuspotent elements. Tmen T is directed by the partial

ardering g» &eﬁnad.‘ "g;f;

$l g’ 52 L] Bjﬁg = 31.
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Moreoirér, T, considered ags & net in &, converges Lo
15; zero @ for 83 i.e,, @ satisfies
{#) . G w &@k‘mu@

forall s in S

PROCF., That 3 é‘.ﬁ_ggg*{:g T is tziﬂale Since there is &f
most one element & in B ‘which satisfies (4), to

e@plete the procf it suffices to show th&t the limit of ary
convergent subset of T must satisfy (#). ‘Iﬁtm, let

: RN ‘ beany subéet of T which converges to an element © . |
et 4s iz; T, ‘*.;k‘heﬁ {%}& is e%&b&&m greater than or

equal to %, so ‘ﬁh@;ﬁ

t6 = limtt =limt =@
k : 5+ & o 47
By density of T, @ satisfies (4).

5.3.5.  THEOREM. Let Y be a Banach space, let T be & commbative

semigroup of idempotent linear operators on ¥, and supy 08e

that for every element y in Y the set

- 0(y) = weak closure of (t(y): t €T)

is weakly compact in Y. Then the following statements
held. | |

o Lo i R




—/#¥ -

(4) Forevery v in Y there iz one end only

. ome T-fized poimt @(y) in O(y); i.s.,

one point ©(y) such that $(8(y)) = e(y)

 forali t im T.

(41) The mepping ©: Y~ Y givenby (1) is

- continuons and linear. M@reavér , T, directed |

as | in the lemms, converges pointwise to

o @; i.e., for‘evezk:y 3 }_n__ b e

1m :!1@(:9;’)‘»“‘ )l =0
tET s

{i14) The space Y can be written as & direct sum

“Ym.ﬁl&%‘%

where Y, = (y €Y :y is T-fixed) = o(Y)
and Yow= {y €Y : 0 € 0(y)} = kerg.
PROOF. Let Q= T {(O(y), wesk) have the product topology.
ye¥ ‘ ‘ , :
Then & 418 compact and contains T. Let & dencbte the closure
of Tin Q. By the uniform boundedness theorem, T is uniformiy
bounded and hence each member of § 48 & continuous linesr '_

operator on ¥ %o Y. Suppose 8-~ in 8, end let 8o

be in S. Then for every y in ¥,
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B e ly) = ses (¥)

:‘s@u’:sd,(y) - Q@bk' s(y)

k ‘;weamy in."“Y, 8¢ .8 @ E e ksass an& S 0B =8 o8
: o & e o & U‘; o o
4in Q. Inp particular, if *f{i@fl")f} and .{fs:,ﬁe}} are twe
o : LA N ¢

kmts in T converging tc¢ s, &nd & in 8, then

i 2

L lém ;i%m ﬁél)ot(l) &

L o)
Yo Eorlim X 08 8

e~

‘and so 8 is closed under campositions, Thus S apd T
satisfy the hypotheses of 5.3.4. 7~1;vk:mwarg for zaifg;::y

yiny, ofy) = (s(y) : s€8),

By the lemmsa, T comverges - § to same zero & for

- B, Since to® = 6 for all ‘t'?in T, ely) is & T-fived

point for every y in Y. If z is any T-flxed-pois
in 0Ofy), th@n z= 8(y) for s’éme 63.):; 8 ami 50
2= 0(z) = 0(s(y)) = oly).
Rﬁme {i) holds, and @ is continuous im:i linear, |
 Next, et y bedin Y. ‘liffhenm‘@l(y)‘ ié in‘me norm
closed convex hull of {t(y)‘: i@ ) (by ./} Thus,

given €20 there exist 4,

4 %
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— Y-

, o :
(4= 1,”,.,,@;» with 2 o /= 1 and [lo(y) - gty (9] < ;3;;.,1,‘

where M w ‘sup {Htlﬁ : %t €71, Then t > ’%@Hm %’fn
implies , | e
foly) = )l = |l 6l8ly) - Tayt, M1

€

< Mgy <&,

so lim [Bly) = t(y)||= 0. This establishes (ii).

If ¥y 4s in ¥, then :
y = 0(y) + (v - 0(y)),
ely) is in. | ‘ |
Y=y, €Y: y, fa T-fixed) = 0(Y),
and (y - o(y)) is in k

¥ = kerd = {yo'ﬁY : 0 €0(yolle

Since ¥, NY = {0}, this establishes (111).

LEMMA. Let u be in sba(G,X), and for every E in G,

let pp : G- X be defined by

@) = wENF) , (FEQ).

Then (u, : E €G} 1is & conditionally weekly compact subset

of sba(G, X).

H

WF

a3




5.3.7.

U is s-addi *tivewhich will complete the proof (by

COROLLARY. If u is

— 97~

PROOF. Choose % in ba(Q) such that

o (E) = 0
gz;(m)-« ; !x wl

vnifermly over hx*!l < . et s G —»;sba(&,ﬁx)k_ be given :
by U(E) =g Ten U is finitely aaditive. ‘ 'we shew

f

n.b ﬁ}

Suppase & L% ol LB dia;iafmt sequence in G. ‘l‘m ‘

' Sx*(ﬁ ;»o, 80

lote,) ko = nuE o

ﬂu(E ne)jl

I ﬁ

"P

bl e

R

< 8u .

T el

i

in sba(G), then
{t Mo Fom ER]

1s conditionelly weakly compact in sba(G).

FROCF. If ma (E)] isin B then

6 0(E) = %m»(n ) ® , wea
w i=1 1 ‘

#

o P
3
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5¢3.9.
‘ algebre. ¢ eand any Banach space X, the follawing statements

114

— -

Ncw 4{& “  has & subsequence which _converges

-~ weakly (by 5. 3 & and the Eberlein-Smﬂ.i.an theorem)
- eand the limit must be t“p. Hence tnp, 48 in

_ the wesk closure of  {u, : E €G).

A member u of sbe(G,X) ie purely finitely additive

if and only if for every € > 0O there exists a,partiﬁm

2]

ﬂm ‘*{Eﬁmr in P ,gwh:'ﬁh&t ﬂ’c ﬂg.um'ti €5 d.e.,

it ,gi p(ENE) | -gg o mé‘@“

We let pha(G,X) dencte the ‘purely Pinitely sdditive members ;

of gba(G,X).
‘ Mcmwer, let ﬁca(ﬁ,}{) ﬁamw the space of countebly
a&ditive members of sba{G,X).

THECREM. (m Yosida-Kewitt Decmnposi@ian Theorem). For any

h(}ld “

(1) pbalG,x) is & closed subspace of 8ba{G,X).
{a) sba ((I(,X) = sea(G,X) & }pb‘a(a,x)_; i.e., svery
p in sba (GsX) has & unigue decomposition |

}j,’ = p,c %+ g where y € sc:a{ﬂ,:X),k' By € fpbﬂ(ﬁ,)t)a

(3) Ihe projection €: -y, is continucus and lineer




~
/ .
{

5.3.10.

g~ /y’f s

(4) For every u in sba(ﬁ),,

ofp) = Mm% (p)
T"Ep U
{norm limit).

PROOF. The statements follows from 5.3.5.

PROPOSITION. (1) If u is in ba(G) and p 20, then

$ is puraly finitely additive if and only if

ey

vEcal@) , O<vsp =vs=0.

(44) If u isim ba(G), then m iﬁ purely finitely a,d;ca Lsive

if and ¢ only if p. ;nd " both are.

; ' ¥ #
edditive for every X in X .

PROCE. (4). If @ : bva(G) —-ca(Q) dis the map giver by
the theorem when X =&, then for u >0

0 'ﬁ Qé ) < }L
since 0 <t H S for all m. :m particular, & s

order preserving.

“Thus if yu satisfies the condition in {i); then g} = 0

end p is purely finitely additive. Conversely, il u
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‘is purely finitely sdditive, v € cé.(a), and © SvEp
0<ve o(v) < @(p) = G,
so va= 0. |
k {41). k:m‘ _;f and w ere purely ﬁ,mitely a&&i‘siva
tmn ofn) = 8" ) =el )= 0,
Gonversely, \mppose ¢{(p) = 0. Then
TR e e VR e TP I
Since u, "9(!«& ) >O and 5;,-*9(;3, ) >0, wehave

;x*@(uu)’u and, p-@(u)}“,mdi‘tmuwam'b
Q( QQ angd Q(u 3&:0

{iii) If p is in poe {G,X}, then by definition

‘ x op L& purely m ely aﬁ&itive for a.ny X in K*Q
Ganvarsew, suypese §£ q,u, is gurely fini'&ely aﬂditiv& for |

’allxé'x. £ 9;;,950, henfarsameﬁin@am&f
%

x in X G#z::@y,(ﬁ)um:ttnu(E)u~1m§lx;;(EnEn)mca

‘& contradiction.




.5.1. REMARKS AND REFERENCES.
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(1) Theorem 5.1.5 is a combination of results of Dunford and Schwartz

‘ {1658, p. 314}, Ukl [1971], and Brocks [1971]. - (The last statement of

}§,1n5 is from Huff and Morris [1973].) Corollary 5.1.6(a),(b},{c) were f‘;f

»

proved earlier by Bart;}.e, Duaf@rd; and Schwartz {1%55] as well‘a;s ghe
exizeence of a control measure fnz b zhe full strength of 5.1.6 (i) L

= fellows fmm "’he resulm of 83. 3 (see R.;S 3 far referencezs) I?:mally,‘ :

5.1.6 (e) was fimt pmv&dtby}?etti& {19381{1939L
(2) The in;portani‘; Theorem 5.1.9 ie giueak to mgmwm [1972, R?@péliﬁ |

{3y Theorem 5.1.10

izes Hi ﬂ ‘s theorem 3. 2 10 was

~ proved by Darst (9731

{4) Thearema Se l i1 ssnd 5. 1.13 which ge.nezmlizes mimdym s ‘heorem

3.2.9 and thez Vinali-ﬂahn«Saka theorem 3 2 8 are due to AndS [1%} fur th& |

’w&larw&imd caa% and to 3maks;;and Jezsmzt [1970] for the gemanl case.

(5) Lemsa 5.1.14 is due to Bosenthel [1968], Lemma 1]. Thewem 5.1.15
ifz.i;lé} ie d{m Lo ﬁieaml md F&i’rm {'197333 the r"maf here m fﬁam Uhl

}il?if?.%i, rm.lar:y 5.1.17 had been pxww eariier by Diestel {1975(al ]

These results should J be ~compamd with 1@.2.?-»4. 2.13.

Additima’l References: Maenthal [1970], Brooks {3.973}, Diestel El%?:ﬁ(b)h

quid (19653. Hoﬁfmamw.?ﬁzganaen {l??ll, ‘l‘m&ﬁm [ mmz La‘buda §19?2},,

brewnowski [1872(a)]}.
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R.5.2. REMARKS AND REFERENCES.

{3y The main results here (3. 2 4y 5.2.8) are due to ﬁrl&cz mmd

kPettiss see Pectis 21938} {1939} o

(2) Lemma 5.2.2 goes back'miam ‘to Banach's book 11932, p. 123}.

Additional References: (Pettis-Orlicz éheowém)kxe&saga and Pelczynekd

- [1958], Kaltom [19711,3Esﬁrnhur'[195?}, Grothendieck E19533. Tweddle
{19701; (The Ex;ension‘theutem)‘?cx’llgésjs}ninculeauﬁ and Kluvanek [1967).

R.5.3. REMARKS AND REFERENCES.

Yasi&a amd Hewict El&ﬁﬁ}, usimg 5.3.10 (1) and 5.3.10 (ii) as th&
definition of purely ﬁinitazy a&dixiv&, praved the decampasition theorem for
| the sqalar case. ﬁeing the Yosi&a»ﬂewitc reault and uging 5.3.10 (iii)
as defihiaian, Uhl [l??&}_prnved the theorem fo: the vector-valued case
The p%oof‘givaa;here ofktha‘generai aaaé is dué’ta Huff [1973 (a)].

- The ganer&& exgodim theorenm 5 3. S 13 & special case of knawn ergedie

) thearams (3ea especislly Barry [19541).

Addirtonal References: Aﬁ&ﬁ’ [1961], Brooks [1969], Chatterii [1968],

Y
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