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2. THE THEORY OF A REAL, NON»NEcAﬂvm Collo
MEASURE ON A o—-ALGEBRA

Throughout this chapter, 2 denotes & fixed o-algebra of subsets
. oof ‘eomgsat R, and A dis a fixed, mal-«valued, non-negative, ¢.a.

measure on Z. Im particular, h is bounded.
%2.1. MEASURABLE mﬁffﬁ!ﬁﬁ

2.1 Redall that & function £:2 +R is *‘(g’;)-fmeasura’b:lé 4f and only if ’fn‘li(l)
tg in ¥ for every interval 1 cR. ‘fhe set M(r) of all measurable
‘functiaua ia a linear gpace which is a 's,astt:icez under pointwise suprema

aad in:im.s and 18 closed under po:z.nwiae 1imits of sequences.

P

o ‘Deifina nsM(Z) - R by
o(f) = infle + Mw € 93 |£G)] & e} (£ € K@),
&0 .
The procfs of the following properties of n are left as easy
exercises:
() a®) 20, n() =0 iff £=0 ae 1,
(11) n(-f) = a(f)

(111) a(e+g) s n(f) + n(g).




2.1.2.

Thus n dig almost & norm on M(Z); using it, we define a pseudo-

metric p unkafE) by

plE,8) = nlE-g) (£, € M(D))e

Then p is & translation-invariant peeudo-metric on M(Z), i.e.,

 for all f,g.h in M(z)

(@) pl.g) 2 0, plf,£) =0
®) pif,8) = ple,n)

(e} plf,8) s p(£,h) + plh,g)

and (&) p(E+h,gH) = p(f,g).

A function £ iIn M{Z) is called & A-null function provided

- n(f) = 0, 1.es, £=0 a.e. [A]. Letting N dencte the A=null

functions in H(2), »p is e metric on the quotient space

| MZYINCR) .

THEOREM. 5359 uent e w{fu} in K(Z) p-converges to an ,eljweut; £ in

M(Z) if and ouly if for every >0

#) 1im Mw ;\V"”lfn(w) - f(w)| B e} = 0.
e

&z{ﬁ gf?@ ‘@2*&,‘
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L. PRGGF« Simce both p-convergence and the Limit condition ‘(#), 3re
translation invariant, we need iny conéidezr the case when £ « Q.
Suppose for iwéry e >0, Afw: ifn{’w)\] z €} 3 0. Given
. o . &
6 >0, let ¢ = §/2 and choose n, such that
mamn,e K{w:i}fn(w) | & ¢} < 8/2.
-
‘ Then
n2 ny = e+ h{w:jfn‘(wﬂ z2eleb
E p(fn,O) < G, | N
o ~ Thus £ =0 in the p-topology.

Conversely, suppose fn + 0 in the p=~topology. Let Qw 0
be given. Given any & with 0 < 6 < &, there exists n, such

that |
ne no w inf [B + Nw: lf#w)% z B}}< 6.
| B0 | o

~ Suppose A{w: £, ] 2 e}z 6 for some nz B4+ Then

[eprezs if Bze

B + Aw: gfn(w)‘l' z 8}
& Mw:f | zelzs if B<e,

2.1.2.




e
{ \

w)| & e}l <8, so £

8 contradiction. Hence n & n, = héw:ifn

converges to 0 in the»ﬁénae of (#).
Zo1.i EXERCISES. (1) Show that a sequence ifﬁ}; cM(g) is pwﬁaugﬁy i
“fan&,nénly if faff every ¢ = 0 : | ‘

lim hfw|E (W) - .fm;(ﬁ” e} =0,
W, Trae .

{2} Show thaet 2.1.2 holde if tﬁa aeqwmé {f;’n}; is replaced |

by an gwmtaryjm‘: {‘ﬁa‘}am‘

o

2.1.4. The p-topology on M(I) 1s called the topology of mﬁvarﬁe:{n__g_g in
h~measure. It is easlly cheekeé‘&h&g tha'ﬁalldwing,fanctimns are

continuous with respect to this topology:
{1y asM(z) % M{Z) -+ M(Z), where a’(f,gji w £+ g,

{11) mu;:ﬂ(z} + M{E) ,k wﬁere, md{f‘) = of, wheam o is

&n arbitmry but fixned ‘mai. nunber,

(111) viM(D) » H(Z), vhere v(f) = |£].

2.1.5. EXERCISE. Let ) be defined on Z = 2° by

KAY = QQ(A} wad

-6~
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! Show that

{1 1f D) 40 ! |
n{f) = : .
~ 0 4if f(O} - ’ :

e n e not a pseudo-norm om M@) (Bince n(uf} L [a{n(f) )

2.1.6.

Ccmclude also that the pﬂfmpwlagy on M(Zi) ig mot & 1‘!.31@&1: t:opology._

‘i.m, with it M(m does not form a linear topolagwal gpace.

THEOREM (Egoroff's Theorem). If fn; £ are in M(Z), then £ - f

ae. A i@..ﬁﬁﬁ only if

@

Y PP S e Y ',g_- 5 & & R -
(&) Ver B3 EsE3NA)<e end £ 1

PROOF. It is trivial to show () = £ + £ a.e. (M.
ﬁpnve'maly, as‘aume ;fn -+ £ ,a.e;. {%]. Then by translatiom, assume
£ = 0 and by redefining the functions on & set of messure zeroc,

AEBUNEG ‘fn < 0 merwhere, For all k,m = 1;2%@ .‘.-, let

| Then By p® B m and Q = kgl E, g Hence

kikk’m) 2 K(Q) o as kk‘«v . (fj_xgdm),

2.4 6.




2.1.7.

2.1.8.

Et'Z o

Given ¢ » 0, for each m choose k ~such that

£

Let A-x u (Q\Ek ,m « Then W\(A) <ce and for all o in

G\A = n

Biec /’mw‘ |

PRI R ;
|f (0)|<=  whenever nz k.

Hence «_fn < 0 uniformly on 8\A.

COROLLARY, If £ -+ £ a.e. [A], then £ = £ in h-measure.

PROOF. 1If £ +£ ae [A], them by 2.1.6 given ¢ » 0 and
5 > 0 3 set | A €2 and an integer N such that A(A) < ¢ and

g
o

ng W=l -£l <6 on 2\a
=X £ (@) - £@] 2 6} SNA) < e

Hence for every &> 0, Aw: »]fﬁ(m} - £(w)] & 6}-+0.

THEOREM. If {fn} is a p-Cauchy sequence in M(Z), then there

exists a subsequence {£ } which converges a.e. [A] o some

member 9_£ M(z) s

p =
7 ¢
RN




e ff e

PROOF. Since f{fn} is Cauchy in messure, we can choose

By <0y < Ay < oo such that for every k

w,n & m, = Mot ‘ifﬁ(fw)mfm{wﬂ % fi}*f ;ﬁg .

Coneider the subsequence {‘{fnk}j of {£}. Let

- ' = {ws|f {(w)~f {w) | 5'2"%
B " Ll n My 2*

B o ) .
By construction ‘A(Ek)i < - 1 +« Let A= 0 (U ‘Ez)f.‘ Then
2 kel &=k ‘

AGA) & A( U ) < L for every k, 8o A(A) = 0. Now suppose
A=k 2 : v
@n % R\A&, &and let ¢> 0 be givene There exists &k such that
[ Ao and such that a § U E,. Thus
P A
2 fwl,

Lz koo, ¢ {m:!fu&(m)-f - () | 7 }

1
£ (@i-f (o] <=,
LA PR N

and 8o

N B 1
Lz kew¥p, £ (@)f @ (0)] <=2 .

Hence {fn } converges pointwise on AQ\A,A §0 f% -+ £ @.e. [A]
e ' , ~
for some £ € M(Z).
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2.1.9 CORCLLARY. M(Z) is a complete pseudometric gpace in the topology

of convergence in measure.

- PROOF. Suppose {f } is p-~Cauchy. Then gome subsequence ¥

‘ ;p-‘-convm:ges £o some £, an& hence {f b p-'-éonvergéa to £.

k 2.3.10 Recall that a {Z~) simple function is a function cé%i the form

Zax
gep VE

where -a € R, ‘Ei €3 (1= 1;,&0«1'“)0 Such_a function has & unique ,

repre.sanmtion of this form if we assume 1 # J = ey $ aj and Ei 0 Esvu ¢
. and thet R = U Ei, The simple fuactions form a linear su‘né@& é‘ﬁ

M(£). Every member £ of M{Z) is the yomwma 1imit of a sequence
{f } of simple functiene, if £2 0 we may take f a 0, Vn:

1f £ 4s bounded we may chooae the f 's such that f -+ £ uni.femly.f

’2.1.11 EXERCISE. Fmd a a&quﬁema of functions f such that £ =0 in
measure ‘bu;‘ such that kkfn’ aamm conve:ge g.e. [A\]. Thus convérgme
in measure and cmﬁvergeme a.e. [X} do g_g;g_ coincide. | k
Note thai: £ T 0 1:m measure implies that avei:y subsequence
£ } has a subwsubale‘queﬁce which ca#ve:ges a.¢. toO Q; Conclude
that @.e. convergence is not a toﬁclogical mode of ’c@nvargenc~e§'
i.e., there is no topology on M(z) for which convergenw of sequences

is precisely comvergence almost everywhere {‘A]
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2.2.1

MEASURABLE SETS

The function E = XE is a am-towpe map of Z dinto M(Z);
ite range is t:he set of ‘ali‘ {0,1}«-—«:&1@& members of Mi’é})o

1f the pseudo-mmemia p on M) is "pulled back” to I

din the mztutal way, then by 2 1. 99 z becames a complem

pseuﬁwmm&c space. We ‘have fmr & B in z

PAB) = p(X,.Xp) (definition)
= inf (o + Moz X, (@-X (@) ] 2 €}
= min(}(A & B),1),

where AbB is the aymmettic difference (A\BYU(B\A).

An equivalem. pseudo-metric is

d(A,B) = h{A A B), (AB € 2).

It is -pasily check@d that the falmwing four functions are

all continuous with respect to d.

W B rAND ((a,B) €2 x3)
(11) Ab 2\ | @D

(i1) BB »AUB  ((AB) €Zx1I)
(i) (A,B) > A\B | ((A,B) € Z x12).

Ao dtola




2.2.2

2-203 "

18 in K‘md F 2u E

Y

PROPOSITION. 1If A is 8 sub-algebra of I, then its d-closure

R, 1

EQA)@ {sets of measure zerc}

= {A 4 BiA € Z(A), B € I, A(B) = O},

PROOF. - Restricting L to Z(A), Z(A) 1is complete and hence

ite closure 1is Z(A) (&) {sets of ‘measure zero}.

It follows from continuity of set operations that A
: o o
is an a;?s;g‘ehm.f Suppose {E }” s in K 'z:hen J? = U By
; fum]
sca '

By
qgmy

. =
Eence U E , i 1in A.
tw1 :

COROLMRY. The measure A is completely rdlewrmined by its
values on any mbwalﬁehm A af % for whiah z = 5(A).

_ ?ROQF‘ Note that X ia (tmifomly) dwcuntinuaus on I since

Exm;—»xmi - [xm\s)-x(mm s xmg) + MB\A) = M4 4 B) =
(&A,B}a By 2.2.2, :!.f 2‘-! 3€A}, t:han A iz d-dense in 3.




2.2.4 For \ in ca‘?‘(}}), the measure algebra Z/A ie the set

2.2.5

of all ﬁquivéleme classes
E={FEI MEALAF) =0}, (EE€3).
We carry M\ over to I/u by lettimg A(E) = M(E). Thie

and the following operations are well-defined

4

ENF=(ERF)

gl

EUF=TEUR

E\NF=(B\ D)

o
EaF=T22 5

(U E)=(U E)
asl ® gep ®

(A E)=(h 2.
nvln Vnﬂln

Write E cF if end only 1f EN ¥ = E. From above we know

that 2/A is ‘a‘ complete metric space under the metric

voucia s

hset AC] ‘is gaid to be an atem of % 4f A(4) # O "snd

BCA, BEZ=n(A) » a(B) or A(B) = 0.




e
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2.2.6

mﬁz%m

Eqaivaléntlygk A is ap atom of A if and only if

" Bch, BeL/AmBwa or T =g

£ )

The measure X is said to be mon-atomic if there are no

atoms of A da I3 A ig said to be purely atomic if 2 can

be expre&sed as the union of atoms.

THEOREM. If A & ' ca*‘(z) is nanwagamie., then for euerj

E in I with ME) >0,
{A(F):F € Z, F € E} = [0,M(E}].

Eﬁaﬁ}?. We first show that there exist subsets of E with

athitﬁr‘iiy emall positive measure. Suppose this is not the

" case. Let

A= {F ¢ 5/AF < E, X(F) > 0}

Qz:dei: A by inclusion, let .;‘C' be & chain in A, aad let

§ = inf {i(?} :F ¢ C}. Note that by assumption B » 0. If there
exists v'if; sn C with A(F) = B, then F is a lower bound
for C. Sup,ﬁase T »-:«vﬁ for every F oin C, a#d chocse
& aequencé '{ﬁu} in C with ‘i(ﬁm}& At}. Then since C |

48 & chain, mgnon=F CF . Hence MO F) =g
n £ oy 2 '
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2.2.8

It T dstn C, then B<X(®, so A(F) <X(®) for

ui suffiiiently large. $isce € 1s @& chain, f > ?m 3 21 ﬁn,'
‘He}gce nF is a ,lawerhound for (. By Zorn's 1emm&? A
fhat; a a?;imal clement K. But then A must be an atom,

sentrary to hypatheaia. "Ehemfdre‘, if k(E)ﬁ > Q, ther B

jmust: contain sets with ar’biﬁ;mrily sm.ll positive mmure., |

Elaw lat 9 < s.: LLEY b ‘,.d Ey an a_g,m imﬂ_mf‘ to

the ,abr.we,

E= {F € 2/MF CE, ¢ 5N}
has 2 minimal elemnt, say F. If k-?:(") >0y m"“
TcF with 0<W® < X(® - e Then 7\C is in B,
contradicting minimality of ¥ dn B. Thus there existe

7 CE With X(F)x"‘ﬁ.v . p

COROLLARY. If k ﬁ ca {21) 'i.s mn—-atzomi.cz, if Gy > > 0

(4=1 2,...,n}, and if )f o - Mm, t:hmx there existe

a E-gm’tit:!.on 7= {El’“"E } of 8 sueh that:

K{Eji) =a, ;ﬁﬁ.?. all i = 1,.0.,m.

’IQEORM Ef X :La in. ca (E), then thex:e exista an essem:m&g

unique debomgositian of @ im:o disjoim; 3ecs 4B € L such

r.hax: & :m a unicm of & counta’ble number of atome of A and

B conmine ne atoms of \. Thus, if )xl(E) = %(E I &) and




z,a%) = 'X@'(E N B), (E € £), then 7\»1 is purely ‘fﬁm"-"’s. 1_2 is

Eg;n«-atomic,‘ing Ae kl* ‘}'2"

PROOE. Let {;&i}wx be a maximal disjoint family of atoms
" of . Since A(R) < =, I is countable. Let A= U A

| ter *

’ 2.2.9 - Leti, Z and M be o-algebras of subsets of @ A;n& A r@apm;imly
latk‘ A be in 'cﬁ(ﬁ) N and let m be in caﬂ?{). A function
P12/ - M/m 1is said to be sn isomorphism pmv‘idad for all B,Y
in I, k | |

W YEUH =@ LD

(11) YENE) = ENULE)
and (140) mp(E) = N(®).

We note that an isomorphism P:E/A -+ i/m has the ‘ollowirs
aﬁditionai prapezfies,

(v) YENT = ¥(E® N ¥m

W) $EF = V(E)WE)
i) WELTF) = VE) A ¥H

(vm} ¥ is an isometry; l.e.,

BW® 8 ¥®) = X(E 5 D.




P

(vitd) ¥(n %’ﬂ) = U $(E)
' n=1 E ‘ﬁ'l B

and (x) WA E) = 0 W(E ).
n=l n=1

PRGGF? (iv} o {wii) ,am 't:rivial.k To prove (viii) we need only

| e:ensider the case when tha E ‘s are disjoi.nt. Then k

%)iu E)wﬁ:(%m u E)wlim %.3 zg:(E)m u \b(E) by
n= ® o=

1

{i) and (vii). Statemént {ix) fuliws by complementation.

%

2.2.10 THEOREM. Let ) be s member of ca (2) with M@ =1 and

suppose s/ is geparable. Let M denote the o-algebra of

Borel subsets of [0,1], and let 'm denote Lebesgue measure

on M. Then there exists an isomorphism Yi/h -+ Wa, If

A is non-atomic, them ¥ can be taken to be onte M/m.

PROOF. Let E = {En}:nl be a sequence im I such that

R R ' : ‘ | . : P

| {Ea}mwl is dense im Z/A. For aa»::h n, let L denote
the collection of atoms of {‘El,,..,ﬂn}. Then each W, is &
‘pattition of @, and “n‘-i-l refines Té o
Note that m, = {E ,sz\nl} Let “’(Ex;‘ = [0,M(E )L

' and let PR = (\GEp 1.

Now auppoaa ¢ has been defined on ss - {Fl,n,,,F } te

M, say :p(Fi) = Ii” where {Xl,.a.,l 1 is a partition of [0, 1}

o ey
& g (" g




P
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dnto intervals such that m{Ii} "= X(Fi)g b = loesesme Let

LI fGi,.M,Gp}a ‘Recall that #__, refines . Ve may

aseume F_ = U G,, Choose {J. ,.ccpd I, & partition of
1 e b 1" g

I‘l into intervals such that m‘(Jj‘) - k-(Gj), 3™ lyesesQe

Let w(ﬁj) = J,, j®1l,...,q9. Define ¢ on the rest of the

m%xe:s of un 1 ‘~~simils:1yu ‘
By induction, ¢ is defined on all of U w_. If 4
| ; o E

is in A(E), them by 1.1.2 and 1.1.3, A ie the (disjoint)

union of members of & partition ‘nn for some n, say

ho= Uk‘ F g where the Ei'a‘ are menbers bf ’un.; Let

i€l

o) = U ().

iel ,
We have now defined @tA(E) + M such that it preserves

the algebra ;opetat:iom and it 'prevewes measure. Define

GAGE) -+ Mim," where A(E) = {E € T/ME € A(E)}, by
o(E) = 9(B) (B € A(E)).
Then 5 is an lsometry and hence extends uniquely to an isometry

sz + M/m

since A(E) is dense in Z/Xh.




P

e

Ve wxriﬁy that % 4g ap immrphi‘sm; Let E and ¥
be in I, and choose T, T in A(E) such that E 4%

and F + F., Then

VEUT) = Wlim E UF))
= Lim $(E, .U F )
= 1lim W{Eﬁ) Uy )

= v(® U@,

since ¥ 18 an isamamy; similerly Y@E\E) = T0,1] ¥(®)

Finally, suppose A is non-atomic. Let I be any

interval in [0,1], and let &> 0 be givem. Ey 2 2;?, we

can pertition @ into sets Fl,...,rm mch that
kx(?j) < &/é4 for each 1. Choose n 80 large that each

F, is within ¢/4 of a finite union of members of

i
wn e {Gl,...,%}. Then mix ’)‘(Gj) < €/2, and 80
{w(Gl,...x,cpCGﬁ)} is 8 partition of [0,1] into intervals

such that max n(p(G,)) < a/i; Let A = ‘
S8 m(cj)nw £}

Then m(l 4 ¢(4)) < &. It fnllows thaz; there exists a sequence
£} in /%  such that x;a.(An} +T in M/m. Since '
¢ -is en isometry and I/A is completa, Kn + A for some

4 in Z. Hence I= V(R This gfaves that Y(Z/N)




x‘;mn

Z,Q 20 12

A

includes {I:I 4s an interval in [0,11}; it is also
closed under countable unions eand ccmpl&m@ntm and it fﬁllmém

that @(Z/7)  includes all af Kim. | , "

/
{

If %€ ca+€2} ie purely ai.!.:omic, then £ ds ':L?acmarphﬁc; ;

to either 2 iv or 2{1’“ ’nf!v for some mn, where

Sy is some measure.. 'rhus, ia: follows from 2.2. 8 and

’ 2.2.9 thet whenever z is cmmm%sly genersated and A is

in ;:a@{::)l,f /A is isomorphic to qn& of

- {a) the measure algebrz of some in‘ftzerval‘ [0,e] with
| wbas.gue measure.
{E) ‘the_measure ﬁlgebm -21’;}’ v for some J CN

and (¢} a “direct sum".of (a) and (b)

THEOREM. If A is in ca (Z) gnd ) is mot purely atomic,

then there exist ¢ > 0 &“ﬁf‘ A sequence {E“}l in I such that

ME AE)&Ze for ném In particular, ZI/A is not compact.

BROO¥., If k 18 not yumly atomic, then by 2. 2 8 we can fmci

0 in 2 auch thm: ‘k(& ) > 0 and AQ wntzaim no m:omp
b 1 b

By au indw:t:ian argument using 2,2.7 (or 2.2.6}, we can find
a dombly~in&exed colleation {A .n = 0.1, 25.”, Zﬁ. 51 5 2 '}

in 2 such that for every n aﬂd i, I\(A g WMM 1)

,ﬁ

a#nd An:ﬁ i the diﬁjnmt union oﬁ 4 +1 251 and é&n-i-].@z:l“

Lot




.

 Fhesw For | 'r.#m
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B T A

a, TS

Ep = AV Ayss R ‘
By Thy M At AUy Ay, f2. Ay, Ay
D Ry By Ay Ay By Ay Ag; Ay

@ e e

, ACE, & £, = 2 AAe, ) .
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2.3 THE INTEGRAL .
2.3.1. We let )f (£) @8enote the space of all ZI-simple fuhctions.
1e in J(E), ite Iintegral is defined

. n
1T f-”;s?;i c,ixgi

by :
b i L4 4 ;
| Jran agimiki;:i}.
It is easily established that this is o well-defined (positive)

linear functionel on J (L). Moreover,

’ \Ml = .f kiiff id‘u
metrie for f (T) with respect to which the
5 el

] %*‘a‘séada«a :
. iotegral is continuous. In fact, | jﬁémg <
We can shstractly complete this epace in the usual

way: the completion consists of ell equive.ence classes
ey ; I :
{ {‘fm};‘!.} of “.“1- | Cauchy sequences {gn}; 1 in ,J (r), where

{£,) 1s equivalent to (g;) provided ke, - g lly =©
. The norm of H:ﬁn}} 18 given by m {f’n}]\‘i = Mm “fn “}:

Toe integral extends to the completion by
fllz,)lan = pim Ir_an

The inbtegral 18 & continucus linear functional on the completion.




T i

Ve shall identify this completion with a léertathn linear
subspace of M(Z) / N(A). »

~ Suppose (£,) tsa [ -»c:wchy sequence in L),
Then it is Cauchy :m A«measuie, s@ there exisis £
in WE) such that f ~f in )-measure. If {gn} is
&qmiv&lmt to (£, 3 and. g € W(ZT) ds such thab
gnng,inf‘masum, then since f - g 0 in mewm,,
teg s.efdrl. Hence to e&ch membez' {{f }1 of the
abstract campletim of of (;,) ﬁhere ccrrespan&s & uniq,m»
24+ w(A) in WE)/n(r) such *hhm, f,~f in m,&aaurea | In
fact, by 2.1.8, we way g?;m@ss tx;bé representative (£ }
of [i£,)] such that f~f a.e. The map w:l{£,)] = ¢+ ()
is well-defined (snd clearly linear) 621 the abstract
 completion of (J(2), ““1) into "mm)/nm;

We next show that ¢ 1is one ;to;»mje,‘ Suppose if }l
is & Cauchy seguence in )f (z) and suppose fn"' 0 in ‘
messure, Since ¢ is linear, we need only show i, i! - 0.
Given ¢ >0, choose N such that m,n > N & - £ gdx < gy
Now fix b . We will show j‘{f lar <€ which will

. mmmimh the reesult. Note that for &my set 4,

feabtr s o,

BN
(S
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8o there exists 5 >0 mm that

Mﬁ}a& B~ f %32 «:e/.‘zw ; T

Binge £ -»Q in measure, there existaa a > N &uch 'bhaﬁ
Mo |2 (m} | & e/50R)) < 8.
Tous 17 A= (0 |2, (o) 3@;’3‘;\(0}, then

I, m,a J‘g Iy m ;;;f P < £+ W - hyg@%a@a

+ «w o+ m k{ﬂ\&) €€« \\\‘5 fmfyﬂ‘&ﬁ%

Hence ¢ is one-to-one. .

2.3.2. DEFINITION, A function f in M(X) s h-integrable if

and only if thers exists {fu}';j cf(z) such that

W g, =7 seldl,
and
(41) {fn}:‘ is |, I - Cauchy .

In this case the A-integrel of f is (uniquely) .amm, |

by ‘ |
fean = Lm [ran




Thus £ ¢ M(E) is A-integrable if and only if

&

; ;f,«%‘-'n(x) is in the range 1 of @ We let

‘ Ll(k) " {£ f‘yh{&) : £ is )-integrable].

Aer ig customary. we'fidantify {or confuse) functione £

with eq,uivalenee classea £+ n{h)e

Hote that if {f’ jis a | i wauehy sequence in
« l : ’ i
| J(z},_ then so 18 (£, ]] (since | e, ] = legll s 18, = 1,00
It f,~% a.e, then E‘r | ~ |f! =a.e. The extension |
of the |}l ~ nomm from ,{ (£) %e ‘iﬁg completion i

3
i

given by ‘ ; | :
ﬂ(lfﬁ}ﬂ!* ua fe,f = 1w j‘ &kwﬂf a.

Thus when the *a*m :Ls wied over to s (k), we have

liell = [ |£jan for all \-integrable f. Hence, by coastruction,

1*(2) iz & Bansch space wder the norm gl = [|£ian.

If £ is )-integrsble and f > 0," we can choose f "
n f(5) such that £ =1 =a.e. and {F ] 48 |
il “ - Csuchy. Then E 1’ - i:é*g = £ @.e, =nd Uf 1} is
il [l - Camw Hence jfdx. = lim [ 1€, ]dx > 0, and 8o the
integm}. is a positme linear functional on L (h)

g
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2.3.3,

snd

";gy'ﬁef )

Ago, if ¢ ism m{x) sud £ >0, then 7 is

,knm%gmble if and only if

s= o (fedh 1 0gg <f e, ge B

Af fintte. (If & is finite, choose (g )< JE)
such that. 0 < g f» a.e. Then [g dA f some limit, end

 hence {g ]} is E‘;e‘;‘g«ﬁauch:;} Thus if © <f <h and

h is integrable, then f is integrable. It follows

. that for £ mewuruhla, £ 1s ﬁ;n’tegz*a‘bke if and ouly if
|£] s inbegrsble. For motstiomal purposes, 1f e %
in !ﬁ(ﬁ) end f &0,, ve let

ffd.xsa mg {ggé:g o eig <f a.e., g giﬁ}} §m _

(]

A mq,mme mf ) m L {k) &a said to gonverge in mesn
to £el ( Al (mape«etimw, is Cauchy in m&an) pmvme& i ""ﬂgg"w

(e ol =0 a8 = n =)

1 |
If £, =1 inmean, then [fdh - [ra) (but not

conversely) and £, =T in measure {but not converaely).

; THEOREM. (The Monotone Convergence Theorem).

ir ‘{_fm} is a se@mma% 'Ll(k) .i‘ﬁi'?.‘i. ir
(1) Yoer 2 t, ‘&e.; ¥ n, Y
(11) {feon) is bounded,

then £ cmvex'ges in mean ané, a.e, w some mamber of I (k)
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BROC . ([e,a1} 1is monctone incressing by (1} and
hence has & Limdt by (ii). It Zollows that gm 48

Cauchy in mean.

2.3.5. COROLLARY. If (f ) is a seguence in mE), £, 0
; — £ S o e !
‘a.e., 8nd fﬁ*?*l > fxz #.e. for &ll n, Lhen ¥

j"{%gn%fg} dh = lim ! £ 8k

PROCF. Either (fr dn) is bounded or mot.

2.3.6. COROLLARY (Fstou's Demma). 1f (f,) is & mequence in

mE) end £ >C m.e. forall mn, ihen
st }ﬁ. e i I

© [(um ter g} 6x < Um sur (1))
PROCF. [(lim fof £,00% = [y ﬁi;é%fmﬂ ax
=4p [lor £) @
£ Lim nii%% (égfmﬁm
m:m.iw (‘yxfﬂﬁm;

5,3.7. THEOREM (Lebesque's Dominated Convergence Thecren .
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1f {f,) is & sequence in L7{(Ai, if g isinm
L), me e :
| (1) t, =< M&_’k
(11} §rn§ <g &, 8111,
ther 7 isin I'(a), sad

Jran = 2am [roan.

CPRO. Simee |f| = lim |f | <& a.e., £i8in LT(A)

Next, O<g+f, eand g+f ~g+fL. By Fatom's

B

Lemng. |
Jran = (g + £)an - [gaa
< Umdne ([(g+ 2 )00 ~ e
s Lim inr ([£4A) .
Ty s;mnetry,,
[ st e g, )on = -2in sup (fr,00)

8o that

lim sup [£dr < [fan < lim inf ffndig 4




.3.8.

2.3.8.

HOTATION. If § 4& j-integrable (or measursble and

non-negative], and 4f E 4s in I, them :
’ igm}‘ - ‘gﬂf‘ %glh -

c{mm&r {&vsclute Continuity of the Inﬁegml). it
(B;) ie 8 sequence in E, Sud if A(E) ~0, amd 4f
£ is in L7(A), then B

lm o rars 0
T
E ! j a

© PROCY. %ﬁ b e T ~0 m mezmum. Every subsequence

2.3.10. EXE!

b

must have & sub~subsequence converging &.e, Lo Uy and the ‘
integrals comverge to O by 2.3.7. 7Thus we must nave

&? PaN = [Py d) =0,

CISES. (1) If £ isim LY(1), then

1im J raa=o0
- ME) =0 B
in the gense that for every @v&‘ﬁ there existe 5 > 0 such

thet A(E) <4 implies ([ fan | <e.
| B e

(2) 1r £ isin LM(), then E = [ £a0 1is continvous
on (£,4) to R.
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Use Egoroff's theorem and 2.1.8 to prove

L

g ois an LT{n), then dn the get

taed

]
i
o

L
o
o
s

=
; Ny Y :
zf‘ & Lﬁxf“'»ﬁg i 3

“gonvergence in mean BnG convergerce in measurs

gcoincide. Henge Lebesgue’s Dogirated Cunvergance

Theores.
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Zrewm the given Gepology to the d-topology on (.

¥ and ¥y w a(x,v) » &. HNHote that

g By
: '@’&W”@’ﬂnwg’ . A

Wote that %he ldentity mep 1= [1is

Hence € ds decoupnst, ,
Kow let w2 £ = 14 be the paturel cuotient mup,

where /d ie the spses obtaiped fr

amg

} » @le,y) e 0 forsome ¥ in ¢

@ Af (%) £ {7} e O mmme ¥ in C

AL G/A), Then & g & geslpene

conteining [0 ), and so Cm m “{A) Tor some et

o

C /e, Henze v T(m(C)) = C.

How we ghow aag};@ W Ay =Ty

will cempletse the proof. If d4(x,0) < = Yo, ohooss

x, €C suck that &{x,x ) - 0. Bince € L& decompach,
b k4 ‘ -
we oan sSeue o - %, & U.  Then d{x.x.) w {, 8o

n 4] LG o R

“'ij S :
x € m {nlti} = C.

For the remsinder o of thig gectl w:ﬂ, det R be B peaicr

7o dFy
ol o e
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THEOREM. (Regulority of Beire mmesures). For every
st E in ':‘E{{zsiz '
(1) W& = inf (MU}: U is an open Asive set, B < Ul mnd
fiﬁ ALL) » wup “‘“i £t K iz & compact G, ¥ ei;
i

PREOF. et & dencte the collection of all sets
EgB()  setisfying (1), and let % denote the colimetion of

ell compsct G, 's. learly X CR. We nete the follewing

facts ;
“ ;ﬁ@ [ )
1y 1r {'Er}‘f" <R, thm E (R, {For each n
H Ak
shooat m'wgmzzﬁaire sev u with E?f: ‘éfa and i ;
: . o g i

e

£, : gt -0 ° ‘ e 5

i o ; ;
(2} 1% (E 1 C.,ﬁé and. @E@ then T og .

[Choose n  such that %f;: JoE R ARy # fg ans thea

 chocse UDEDE such mm M ; <uE )+ S e M@} £

(3) £ ;D &re in K, then C\ND de lo &,

[Chocse U open with C oy and a (v *w‘i?} € &,

Tmen ¥ NG D ﬁ;w open, (¢ k‘x b} cu NLC 1 B and

(LU Nero)s A (@)= 3TN0} <&

Bince ¥ is wmwd maﬁw Prite wnions and inter-
aeaﬁim&, {3} and (1) i@gmh@&. wi m miﬂ,{ and 3.%.3% shews

mm; the algebrs Kgm@%w % by H is contained in R,

E?




2.4.7.

2ot

But (1) and (2) imply & is & mouctone class, @c

by 1.1.5, B{0) © & This proves (i), and {11 folliows

from (i) by complementation.

1et C{Q) denote the lineer space of all continuous :
sunctione £: (1 ®&. Since every suchk f is B
messurabie anc bounded, it is integrable. The function

o CQ) =8 given by olf) = Jran 15 then & well~

gefined ;gaaitiw 1inear functionel om  C(1).

”@i‘fﬁ% {The Riesz Representaticn m@@f"m% 1y

ic 2 pos ive linesr function z»,J,, on u':f{ﬁ‘g}ﬁ “ner there

P

exists a unigue Baire messure % €ca T(8l0)) muth thst
() = St

for every £ in C(Q).

PROGF, The proof is omitted - see notes and velerences

sechion.,

& CT, = d:pwe.» ods ucmm aimcmm@mag g, and only if

2
tor every open set. U and every poimt x i U there

exiaa‘z;s g set V which is both open and closed (i.e.,

clopen) such that x &‘%}’ < U. That le, the clopen sete
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2.h.11,

.

 hend, O contains & bese for the topolegy of (U,

Bl

forz & bese for the topology of (3.

If {1 is totelly disponnected, the collsctiom ¢
& ) ’ % )
of all clopen setn forss an algebra, Cleerly G o B ()

since every clopen set 15 & eompact G 5 Umobhe othes

"

and thus by 2.k,3,

i@
N

B = T(a).

PROPOSITION. Let (1 be totally disconnected and let

k L " ‘ . B0
G be the aigebra of cloven sets. If (], is e

'l e
@

disfjoint sequence in ( amd If U E  is in G, ther

Tl i

a1l bul Zinitely many & ‘s are empty.
S50 Stk

PROOF. The non-empty weshers of {Eﬁ }‘.? Torm an open

e

cover of 3;3;53 £, which hes no finite subcover.

COROLLARY, 1f ) is botelly disconnected snd G is the

zlgebrs of clopen sets, then every fimitelv additive

weasure on U isg countably additive.

COROLLARY. I 1 is botslly disconnected and ( ig the

» Py

algeors of clopen getc, then every member of be () has

) ; . : "’!“ A 9
& unigue extension Lo & menber of ea (B/0Y)Y,
pres 4 R preereecy Gnidd

o %’g’%ﬁ o
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{1} Frecher [1919] fire: iperoduced and studied tk@*ggﬁﬁégfgéggigs*ﬁf

 bounded, IF &
Cerangs - rer®

{2} Hore thar throughout this chapter, A ﬁﬁaazigw@é~i@ cake the velus

# e, one must be glightly more careful. ¥or example, the fumction 1 im

2.1.1 can be defined in this case by

i -‘&%{f}@ inf {arc ten [ £ 4 & lwp {fﬁﬂu}:%%‘
: €20 ;

‘and 1t is them resl-valued and keepe the saws properties (see e.g.,

Tunford aad Schwartz [1958, p. 101 781

i l is allowed the we.ue -+ o, Fgoroff'e theorsm (2.1.6) faiisg

and so does 2.1.7. Howewer, 2.1.8 gnd 2.1.% vemain vaiid in this setting

(sse Halwos {1@5@g‘azzz}ﬁ‘

€3} ﬁgﬂ&m“f*ﬁ mh&&r&m (2. l 6} i& gﬁaaraliﬁ@ﬁ to mtramgly m&&suxgbie
waaku@é funcrions lever (6.2.3), ang @& Bre Ekwa? iwﬁaﬁ, mﬂd % i ?

(@QM‘ﬁ.auﬁz,:ﬁwmgﬁi, and .0, 246)

e
R.2.2. RZMAPKS AND BEFERENCES

{1y T%zmmm 2.2.6 and 2.2.7 ere upecial cases of Lispounov's mhwﬁm
which ste *e& thet the mmgg of & f:imiw dimensional mm»aammia mwum is

closed amﬁ convey (see Liapounow [ I.%G}‘h

&3
1N

¢5 Theerem 2.2.10 was proved by Halmos and von Neumsps [16 4271 .
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(%} In regsrd to Theores 2.2.1%, it iﬁ iﬁ fact trus i&ﬁt Zf%‘ iz
compact if and only if % 1is purely stomic. (A guick ?éaﬁﬁ can be gives
by considering the measure yl o+ L {x} given by V{E} wégg and. using o
7.1.4, 7.3.1, and B.1.4 h%ﬁ@%g.fﬁ@tﬁ‘%iﬁﬁeﬁﬁﬁrYjﬁzﬂﬁfﬁ cen of coulee

‘be found.)

- Addirionsl Referencent kﬁﬁﬁfﬁ&ﬁﬂ”Sﬁtﬁ&%ﬁeﬁ [1871]

£.2.3. REMARKS AND REFERENCES s .

This is one of many approaches te the abstract Lebesque integral.
e results here are standard material fram~aawxsew,iﬂ fsal Variables; the
" theory of course genata&izeakto the cese of the unbounded 4, see é¢5»

Balmoe [1%507.
R.2.4. REMARES AND REFERENCES

{1} There is & va&t ghesry manaarmiﬁg regular messuree on mep&aa
and l@@&i&§ &am@aet gpaces. (For & begiuﬂiﬁg, see Halmos §1§%&} } e

chose hers ankyksmma results aﬁ immadi&a& int&z@&tﬁ

{23 A camylete, very ﬁiﬁact pruaﬁ Qﬁ th& Riesz ﬁ@pxe&entatium “%@ﬂf@m

(2.4.8) can be found in Rudin [1966].

(3 ?hn material om tnﬁélly &ﬁammnmaete&lugwaﬁa (2~&¢9u2;&9&£)«wi§£

prove useful in 84.3ff.

Adéitional &afasanaa%:k Dinculesnu and Eiuvaﬁekf{iﬁé?éi




