2. THE THEORY OF A REAL, NON-NEGATIVE, c.a. MEASURE ON A  $\sigma$ -ALGEBRA

Throughout this chapter,  $\Sigma$  denotes a fixed  $\sigma$ -algebra of subsets of some set  $\Omega$ , and  $\lambda$  is a fixed, real-valued, non-negative, c.a. measure on  $\Sigma$ . In particular,  $\lambda$  is bounded.

# 2.1. MEASURABLE FUNCTIONS

2.1.1. Recall that a function  $f:\Omega \to R$  is  $(\Sigma)$ -measurable if and only if  $f^{-1}(I)$  is in  $\Sigma$  for every interval  $I \subset R$ . The set  $M(\Sigma)$  of all measurable functions is a linear space which is a lattice under pointwise suprema and infime, and is closed under pointwise limits of sequences.

Define  $n:M(\Sigma) \to R$  by

$$n(f) = \inf_{\varepsilon \to 0} [\varepsilon + \lambda \{w \in \Omega : |f(w)| \ge \varepsilon\} \quad (f \in M(\Sigma)).$$

The proofs of the following properties of n are left as easy exercises:

- (i)  $n(f) \ge 0$ , n(f) = 0 iff f = 0 a.e.  $[\lambda]$ ,
- (ii) n(-f) = n(f)
- (iii)  $n(f+g) \le n(f) + n(g)$ .

Thus n is almost a norm on  $M(\Sigma)$ ; using it, we define a pseudometric  $\rho$  on  $M(\Sigma)$  by

$$p(f,g) = n(f-g)$$
 (f,g  $\in M(\Sigma)$ ).

Then  $\rho$  is a translation-invariant pseudo-metric on  $M(\Sigma)$ , i.e., for all f,g,h in  $M(\Sigma)$ 

- (a)  $\rho(f,g) \ge 0$ ,  $\rho(f,f) = 0$
- (b)  $\rho(f,g) = \rho(g,h)$
- (c)  $\rho(f,g) \leq \rho(f,h) + \rho(h,g)$
- and (d)  $\rho(f+h,g+h) = \rho(f,g)$ .

A function f in  $M(\Sigma)$  is called a  $\lambda$ -null function provided n(f) = 0, i.e., f = 0 a.e.  $[\lambda]$ . Letting  $N(\lambda)$  denote the  $\lambda$ -null functions in  $M(\Sigma)$ ,  $\rho$  is a metric on the quotient space  $M(\Sigma)/N(\lambda)$ .

- 2.1.2. THEOREM. A sequence  $\{f_n\}$  in  $M(\Sigma)$  p-converges to an element f in  $M(\Sigma)$  if and only if for every  $\varepsilon > 0$ 
  - (#)  $\lim_{n\to\infty} \lambda\{w: |f_n(w) f(w)| \ge \varepsilon\} = 0.$

PROOF. Since both  $\rho$ -convergence and the limit condition (#) are translation invariant, we need only consider the case when f = 0.

Suppose for every  $\epsilon>0$ ,  $\lambda\{w:|f_n(w)|\geq\epsilon\}\stackrel{n}{\to}0$ . Given  $\delta>0$ , let  $\epsilon=\delta/2$  and choose  $n_0$  such that

$$n \ge n_0 = \lambda\{w: |f_n(w)| \ge \epsilon\} < \delta/2.$$

Then

$$n \ge n_0 = \varepsilon + \lambda \{w: |f_n(w)| \ge \varepsilon\} < \delta$$

$$= \rho(f_n, 0) < \delta.$$

Thus  $f_n \to 0$  in the  $\rho$ -topology.

Conversely, suppose  $f_n \to 0$  in the p-topology. Let  $\epsilon > 0$  be given. Given any  $\delta$  with  $0 < \delta < \epsilon$ , there exists  $n_0$  such that

$$n \ge n_0 = \inf_{\beta > 0} [\beta + \lambda \{w : |f_n(w)| \ge \beta\}] < \delta.$$

Suppose  $\lambda\{w: |f_n(w)| \ge \varepsilon\} \ge \delta$  for some  $n \ge n_0$ . Then

$$\beta + \lambda \{w: |f_n(w)| \ge \beta \} \begin{cases} \ge \beta \ge \epsilon \ge \delta & \text{if } \beta \ge \epsilon \\ \ge \lambda \{w: |f_n(w)| \ge \epsilon \} \ge \delta & \text{if } \beta < \epsilon, \end{cases}$$

a contradiction. Hence  $n \ge n_0 = \lambda \{w: |f_n(w)| \ge \epsilon\} < \delta$ , so  $f_n$  converges to 0 in the sense of (#).

2.1.1. EXERCISES. (1) Show that a sequence  $\{f_n\}_1^n \subseteq M(\Sigma)$  is  $\rho$ -Cauchy if and only if for every  $\epsilon>0$ 

$$\lim_{m,n\to\infty} \lambda\{w: |f_n(w) - f_m(w)| \ge \varepsilon\} = 0.$$

- (2) Show that 2.1.2 holds if the sequence  $\{f_n\}_1^\infty$  is replaced by an arbitrary net  $\{f_a\}_{a\in D}$ .
- 2.1.4. The  $\rho$ -topology on  $M(\Sigma)$  is called the topology of convergence in  $\lambda$ -measure. It is easily checked that the following functions are continuous with respect to this topology:
  - (i)  $a:M(\Sigma) \times M(\Sigma) + M(\Sigma)$ , where a(f,g) = f + g.
  - (ii)  $m_{\alpha}:M(\Sigma) \to M(\Sigma)$ , where  $m_{\alpha}(f) = \alpha f$ , where  $\alpha$  is an arbitrary but fixed real number.
  - (iii)  $v:M(\Sigma) \to M(\Sigma)$ , where v(f) = |f|.
- 2.1.5. EXERCISE. Let  $\lambda$  be defined on  $\Sigma = 2^R$  by

$$\lambda(A) = \varepsilon_0(A) = \begin{cases} 1 & \text{if } 0 \in A \\ 0 & \text{if } 0 \notin A. \end{cases}$$

Show that

$$n(f) = \begin{cases} 1 & \text{if } f(0) \neq 0 \\ 0 & \text{if } f(0) = 0 \end{cases}$$

so n is not a pseudo-norm on  $M(\Sigma)$  (since  $n(\alpha f) \neq |\alpha| n(f)$ .)
Conclude also that the  $\rho$ -topology on  $M(\Sigma)$  is not a linear topology;
i.e., with it  $M(\Sigma)$  does not form a linear topological space.

- 2.1.6. THEOREM (Egoroff's Theorem). If  $f_n$ , f are in  $M(\Sigma)$ , then  $f_n + f$ a.e. [ $\lambda$ ] if and only if
  - (f)  $V_{\varepsilon} > 0 \exists A \in \dot{\Sigma} \ni \lambda(A) < \varepsilon \text{ and } f_n \to f \text{ uniformly on } Q \setminus A$ .

PROOF. It is trivial to show (#) =  $f_n + f$  a.e. [ $\lambda$ ].

Conversely, assume  $f_n \to f$  a.e.  $[\lambda]$ . Then by translation, assume f=0 and by redefining the functions on a set of measure zero, assume  $f_n \to 0$  everywhere. For all  $k,m=1,2,\ldots$ , let

$$E_{k,m} = \{\omega : |f_n(\omega)| < \frac{1}{m}, \forall n \ge k\}.$$

Then 
$$E_{k+1,m} \supset E_{k,m}$$
 and  $\Omega = \bigcup_{k=1}^{\infty} E_{k,m}$ . Hence

$$\lambda(E_{k,m}) \nearrow \lambda(\Omega)$$
 as  $k \rightarrow \infty$  (fixed m).

Given  $\varepsilon > 0$ , for each m choose  $k_m$  such that

$$\lambda(\Omega \setminus E_{k_m,m}) < \frac{\varepsilon}{2^m}$$
.

Let  $A = \bigcup_{m=1}^{\infty} (\Omega \setminus E_{k_m,m})$ . Then  $\lambda(A) < \epsilon$  and for all  $\omega$  in  $\Omega \setminus A = \bigcap_{m=1}^{\infty} E_{k_m,m}$ .

$$|f_n(\omega)| < \frac{1}{m}$$
 whenever  $n \ge k_m$ .

Hence  $f_n \to 0$  uniformly on  $\Omega \setminus A$ .

2.1.7. COROLLARY. If  $f_n \to f$  a.e. [\lambda], then  $f_n \to f$  in \lambda-measure.

PROOF. If  $f_n \to f$  a.e.  $[\lambda]$ , then by 2.1.6 given  $\epsilon > 0$  and  $\delta > 0$  3 set  $A \in \Sigma$  and an integer N such that  $\lambda(A) < \epsilon$  and

$$n \ge N = \|f_n - f\|_{\infty} < \delta$$
 on  $\Omega \setminus A$ 

$$= \lambda\{\omega : |f_n(\omega) - f(\omega)| \ge \delta\} \le \lambda(A) < \varepsilon.$$

Hence for every  $\delta > 0$ ,  $\lambda \{\omega : |f_n(\omega) - f(\omega)| \ge \delta\} \rightarrow 0$ .

2.1.8. THEOREM. If  $\{f_n\}$  is a p-Cauchy sequence in  $M(\Sigma)$ , then there exists a subsequence  $\{f_n\}$  which converges a.e.  $[\lambda]$  to some member of  $M(\Sigma)$ .

PROOF. Since  $\{f_n\}$  is Cauchy in measure, we can choose  $n_1 < n_2 < n_3 < \dots$  such that for every k

$$m,n \ge n_{|_L} = \lambda \{\omega: |f_n(\omega) - f_m(\omega)| \ge \frac{1}{2^k}\} < \frac{1}{2^k}$$

Consider the subsequence  $\{f_{n_k}\}$  of  $\{f_n\}$ . Let

$$-\mathbb{E}_{k} = \{\omega : | f_{n_{k}}(\omega) - f_{n_{k+1}}(\omega) | \geq \frac{1}{2^{k}} \}.$$

By construction  $\lambda(E_k) < \frac{1}{2^k}$ . Let  $A = \bigcap_{k=1}^\infty (\bigcup_{\ell=k}^\infty)$ . Then  $\lambda(A) \leq \lambda(\bigcup_{\ell=k}^\infty) < \frac{1}{2^{k-1}}$  for every k, so  $\lambda(A) = 0$ . Now suppose  $\omega_0 \in \Omega \setminus A$ , and let  $\varepsilon > 0$  be given. There exists k such that  $\frac{1}{2^{k-1}} < \varepsilon$  and such that  $\omega_0 \notin \bigcup_{\ell=k}^\infty E_\ell$ . Thus

$$\ell \ge k = \omega_0 \ \{ \ \{\omega : | f_{n_{\ell}}(\omega) - f_{n_{\ell+1}}(\omega) | \ge \frac{1}{2^{\ell}} \ \}$$

$$= | f_{n_{\ell}}(\omega_0) - f_{n_{\ell+1}}(\omega_0) | < \frac{1}{2^{\ell}} \ ,$$

and so

$$\ell \ge k - \forall p$$
,  $|f_{n_{\ell}}(\omega_0) - f_{n_{\ell+p}}(\omega_0)| < \frac{1}{2^{k-1}}$ 

Hence  $\{f_{n_{\xi}}\}$  converges pointwise on  $\Omega\setminus A$ , so  $f_{n_{\underline{k}}}\to f$  a.e.  $[\lambda]$  for some  $f\in M(\Sigma)$ .

2.1.9 COROLLARY.  $M(\Sigma)$  is a complete pseudometric space in the topology of convergence in measure.

PROOF. Suppose  $\{f_n\}$  is  $\rho$ -Cauchy. Then some subsequence  $\rho$ -converges to some f, and hence  $\{f_n\}$   $\rho$ -converges to f.

2.1.10 Recall that a  $(\Sigma-)$  simple function is a function of the form

$$f = \sum_{i=1}^{n} a_i X_{E_i},$$

where  $\alpha_i \in \mathbb{R}$ ,  $E_i \in \Sigma$  (i = 1,...,n). Such a function has a unique representation of this form if we assume  $i \neq j \Rightarrow \alpha_i \neq \alpha_j$  and  $E_i \cap E_j = \emptyset$  and that  $\Omega = \bigcup_{i=1}^n$ . The simple functions form a linear subspace of i=1  $\mathbb{M}(\Sigma)$ . Every member f of  $\mathbb{M}(\Sigma)$  is the pointwise limit of a sequence  $\{f_n\}$  of simple functions; if  $f \geq 0$  we may take  $f_n \geq 0$ ,  $\forall_n$ ; if f is bounded we may choose the  $f_n$ 's such that  $f_n \Rightarrow f$  uniformly.

2.1.11 EXERCISE. Find a sequence of functions  $f_n$  such that  $f_n \to 0$  in measure but such that  $f_n$  does not converge a.e.  $[\lambda]$ . Thus convergence in measure and convergence a.e.  $[\lambda]$  do not coincide.

Note that  $f_n \to 0$  in measure implies that every subsequence  $\{f_n\}$  has a sub-subsequence which converges a.e. to 0. Conclude that e.e. convergence is not a topological mode of convergence; i.e., there is no topology on  $M(\Sigma)$  for which convergence of sequences is precisely convergence almost everywhere  $[\lambda]$ .

### 2.2 MEASURABLE SETS

2.2.1 The function  $E \to X_E$  is a one-to-one map of  $\Sigma$  into  $M(\Sigma)$ ; its range is the set of all  $\{0,1\}$ -valued members of  $M(\Sigma)$ . If the pseudo-metric  $\rho$  on  $M(\Sigma)$  is "pulled back" to  $\Sigma$  in the natural way, then by 2.1.9,  $\Sigma$  becomes a complete pseudo-metric space. We have for A,B in  $\Sigma$ 

$$\overline{\rho}(A,B) = \rho(X_A, X_B) \qquad (definition)$$

$$= \inf_{\omega} \left[ \varepsilon + \lambda \{\omega : |X_A(\omega) - X_B(\omega)| \ge \varepsilon \} \right]$$

$$= \min_{\omega} \left( \lambda(A \triangle B), 1 \right),$$

where A  $\triangle$  B is the symmetric difference (A\B)U(B\A). An equivalent pseudo-metric is

$$d(A,B) = \lambda(A \wedge B), \quad (A,B \in \Sigma).$$

It is easily checked that the following four functions are all continuous with respect to d.

(1) 
$$(A,B) \mapsto A \cap B$$
  $((A,B) \in \Sigma \times \Sigma)$ 

(11) 
$$A \mapsto \Omega \setminus A$$
 (A  $\in \Sigma$ )

(iii) 
$$(A,B) \leftrightarrow A \cup B$$
  $((A,B) \in \Sigma \times \Sigma)$ 

(iv) 
$$(A,B) \leftrightarrow A\setminus B$$
  $((A,B) \in \Sigma \times \Sigma)$ .

2.2.2 PROPOSITION. If A is a sub-algebra of Σ, then its d-closure

Ā, is

 $\Sigma(A)$  (a) {sets of measure zero} = {A \Delta B: A \in \Sigma(A), B \in \Sigma, \lambda(B) = 0}.

PROOF. Restricting  $\lambda$  to  $\Sigma(A)$ ,  $\Sigma(A)$  is complete and hence its closure is  $\Sigma(A)$  (a) {sets of measure zero}.

It follows from continuity of set operations that  $\overline{A}$  is an algebra. Suppose  $\{E_i\}_{i=1}^{\infty}$  is in  $\overline{A}$ . Then  $F_n=\bigcup_{i=1}^n E_i$  is in  $\overline{A}$  and  $F_n \nearrow (\bigcup_{i=1}^n E_i)$ , so

 $\lambda((\bigcup_{i=1}^{n} E_i) \wedge F_n) = \lambda((\bigcup_{i=1}^{n} E_i) \setminus F_n)^{\frac{n}{n}} 0. \quad \text{for } n \in \mathbb{N}$ 

Hence U  $E_i$  is in  $\overline{A}$ .

2.2.3 COROLLARY. The measure  $\lambda$  is completely determined by its values on any sub-algebra A of  $\Sigma$  for which  $\Sigma = \Sigma(A)$ .

PROOF. Note that  $\lambda$  is (uniformly) d-continuous on  $\Sigma$  since  $|\lambda(A)-\lambda(B)| = |\lambda(A\setminus B)-\lambda(B\setminus A)| \le \lambda(A\setminus B) + \lambda(B\setminus A) = \lambda(A \land B) = d(A,B)$ . By 2.2.2, if  $\Sigma = \Sigma(A)$ , then A is d-dense in  $\Sigma$ .

2.2.4 For  $\lambda$  in ca<sup>+</sup>( $\Sigma$ ), the measure algebra  $\Sigma/\lambda$  is the set of all equivalence classes

$$\overline{E} = \{F \in \Sigma : \lambda(E \triangle F) = 0\}, (E \in \Sigma).$$

We carry  $\lambda$  over to  $\Sigma/\mu$  by letting  $\overline{\lambda}(\overline{E}) = \lambda(E)$ . This and the following operations are well-defined

$$\overline{E} \cap \overline{F} = \overline{(E \cap F)}$$

$$\overline{E} \cup \overline{F} = \overline{(E \cup F)}$$

$$\overline{E} \setminus \overline{F} = \overline{(E \setminus F)}$$

$$\overline{E} \wedge \overline{F} = \overline{(E \wedge F)}$$

$$(\bigcup_{n=1}^{\infty} \overline{E_n}) = (\bigcup_{n=1}^{\infty} E_n)$$

$$(\bigcap_{n=1}^{\infty} \overline{E_n}) = (\bigcap_{n=1}^{\infty} E_n).$$

Write  $\overline{E} \subset \overline{F}$  if and only if  $\overline{E} \cap \overline{F} = \overline{E}$ . From above we know that  $E/\lambda$  is a complete metric space under the metric  $\overline{d}(\overline{E},\overline{F}) = \overline{\lambda}(\overline{E} \wedge \overline{F})$ .

2.2.5 A set  $A \subseteq \Sigma$  is said to be an atom of  $\lambda$  if  $\lambda(A) \neq 0$  and

$$B \subset A$$
,  $B \in \Sigma \Rightarrow \lambda(A) \Rightarrow \lambda(B)$  or  $\lambda(B) \Rightarrow 0$ .

Equivalently, A is an atom of  $\lambda$  if and only if

$$\overline{B} \subset \overline{A}, \overline{B} \in \Sigma/\lambda = \overline{B} = \overline{A} \text{ or } \overline{B} = \overline{\phi}.$$

The measure  $\lambda$  is said to be <u>non-atomic</u> if there are no atoms of  $\lambda$  in  $\Sigma$ ;  $\lambda$  is said to be <u>purely atomic</u> if  $\Omega$  can be expressed as the union of atoms.

2.2.6 THEOREM. If  $\lambda \in ca^+(\Sigma)$  is non-atomic, then for every E in  $\Sigma$  with  $\lambda(E) > 0$ ,

$$\{\lambda(F): F \in \Sigma, F \subset E\} = [0,\lambda(E)].$$

PROOF. We first show that there exist subsets of E with arbitarily small positive measure. Suppose this is not the case. Let

$$A = \{ \overline{F} \in \Sigma/\lambda : \overline{F} \subset \overline{E}, \ \overline{\lambda}(\overline{F}) > 0 \}.$$

Order A by inclusion, let C be a chain in A, and let  $\beta = \inf\{\overline{\lambda}(\overline{F}): \overline{F} \in C\}. \text{ Note that by assumption } \beta > 0. \text{ If there exists } \overline{F} \text{ in } C \text{ with } \overline{\lambda}(\overline{F}) = \beta, \text{ then } \overline{F} \text{ is a lower bound for C. Suppose } \overline{\lambda}(\overline{F}) > \beta \text{ for every } \overline{F} \text{ in } C, \text{ and choose a sequence } \{\overline{F}_n\} \text{ in } C \text{ with } \overline{\lambda}(\overline{F}_n) \geq \beta. \text{ Then since } C \text{ is a chain, } m \geq n \Rightarrow \overline{F}_n \subset \overline{F}_n. \text{ Hence } \overline{\lambda}(\bigcap_{n=1}^\infty \overline{F}_n) = \beta.$ 

If  $\overline{F}$  is in C, then  $\beta < \overline{\lambda}(\overline{F})$ , so  $\overline{\lambda}(\overline{F}_n) < \overline{\lambda}(\overline{F})$  for m sufficiently large. Since C is a chain,  $\overline{F} \supset \overline{F}_n \supset \bigcap_{n=1}^\infty \overline{F}_n$ . Hence  $\bigcap_{n=1}^\infty \overline{F}_n$  is a lower bound for C. By Zorn's lemma, A n=1 has a minimal element  $\overline{A}$ . But then A must be an atom, contrary to hypothesis. Therefore, if  $\lambda(E) > 0$ , then E must contain sets with arbitrarily small positive measure.

Now let  $0 < \alpha < \lambda(E)$  hold. By an argument similar to the above,

# $\mathbb{E} = \{\overline{F} \in \Sigma/\lambda; \overline{F} \subseteq \overline{E}, \ \alpha \leq \overline{\lambda}(\overline{F})\}$

has a minimal element, say  $\overline{F}$ . If  $\overline{\lambda}(\overline{F}) > \alpha$ , choose  $\overline{G} \subset \overline{F}$  with  $0 < \overline{\lambda}(\overline{G}) < \overline{\lambda}(\overline{F}) - \alpha$ . Then  $\overline{F} \setminus \overline{G}$  is in B, contradicting minimality of  $\overline{F}$  in B. Thus there exists  $F \subset E$  with  $\lambda(F) = \alpha$ .

- 2.2.7 COROLLARY. If  $\lambda \in \operatorname{ca}^+(\Sigma)$  is non-atomic, if  $\alpha_i > 0$ (i = 1,2,...,n), and if  $\sum_{i=1}^{n} \alpha_i = \lambda(\frac{\pi}{A})$ , then there exists

  a  $\Sigma$ -partition  $\pi = \{E_1, \dots, E_n\}$  of  $\Omega$  such that  $\lambda(E_i) = \alpha_i$  for all  $i = 1, \dots, n$ .
- 2.2.8 THEOREM. If  $\lambda$  is in ca<sup>+</sup>( $\Sigma$ ), then there exists an essentially unique decomposition of  $\Omega$  into disjoint sets  $A,B \in \Sigma$  such that A is a union of a countable number of atoms of  $\lambda$  and B contains no atoms of  $\lambda$ . Thus, if  $\lambda_1(E) = \lambda(E \cap A)$  and

 $\lambda_{2}(E) = \lambda_{2}(E \cap B)$ ,  $(E \in E)$ , then  $\lambda_{1}$  is purely atomic,  $\lambda_{2}$  is non-atomic, and  $\lambda = \lambda_{1} + \lambda_{2}$ .

PROOF. Let  $\{A_i\}_{i\in I}$  be a maximal disjoint family of atoms of  $\lambda$ . Since  $\lambda(\Omega)<\infty$ , I is countable. Let  $A=\bigcup_{i\in I}A_i$  and  $B=\Omega\backslash A$ .

- 2.2.9 Let  $\Sigma$  and M be  $\sigma$ -algebras of subsets of  $\Omega$  and  $\Lambda$  respectively let  $\lambda$  be in  $\operatorname{ca}^+(\Sigma)$ , and let m be in  $\operatorname{ca}^+(\Xi)$ . A function  $\psi: \Sigma/\lambda \to M/m$  is said to be an isomorphism provided for all E, Y in  $\Sigma$ ,
  - (1)  $\psi(\overline{E} \cup \overline{F}) = \psi(\overline{E}) \cup \psi(\overline{F})$
  - (11)  $\psi(\overline{\Omega} \sqrt{E}) = \overline{\Lambda} / \psi(\overline{E})$
  - and (iii)  $\overline{m}(\psi(\overline{E})) = \overline{\lambda}(\overline{E})$ .

We note that an isomorphism  $\psi: \Sigma/\lambda \to M/m$  has the following additional properties.

- (iv)  $\psi(\overline{E} \cap \overline{F}) = \psi(\overline{E}) \cap \psi(\overline{F})$
- $(v) \quad \psi(\overline{E}\backslash \overline{F}) = \psi(\overline{E}) \backslash \psi(\overline{F})$
- (vi)  $\psi(\overline{E} \ \Delta \ \overline{F}) = \psi(\overline{E}) \ \Delta \ \psi(\overline{F})$
- (vii) W is an isometry; i.e.,

 $\overline{m}(\psi(\overline{E}) \Delta \psi(\overline{F})) = \overline{\lambda}(\overline{E} \Delta \overline{F}).$ 

(viii) 
$$\psi(\bigcap_{n=1}^{\infty} \overline{E}_n) = \bigcup_{n=1}^{\infty} \psi(\overline{E}_n)$$

and (ix) 
$$\psi(\bigcap_{n=1}^{\infty} \overline{E}_n) = \bigcap_{n=1}^{\infty} \psi(\overline{E}_n).$$

PROOF. (iv) - (vii) are trivial. To prove (viii) we need only consider the case when the  $E_n$ 's are disjoint. Then  $\psi(U \ \overline{E}_n) = \psi(\lim_{m \to \infty} U \ \overline{E}_n) = \lim_{m \to \infty} U \ \psi(\overline{E}_n) = \lim_{m \to \infty} \psi($ 

2.2.10 THEOREM. Let λ be a member of ca<sup>+</sup>(Σ) with λ(Ω) = 1 and suppose Σ/λ is separable. Let M denote the σ-algebra of Borel subsets of [0,1], and let m denote Lebesgue measure on M. Then there exists an isomorphism ψ:Σ/λ → M/m. If λ is non-atomic, then ψ can be taken to be onto M/m.

PROOF. Let  $E = \{E_n\}_{n=1}^{\infty}$  be a sequence in  $\Sigma$  such that  $\{\overline{E}_n\}_{n=1}^{\infty}$  is dense in  $\Sigma/\lambda$ . For each n, let  $\pi_n$  denote the collection of atoms of  $\{E_1,\ldots,E_n\}$ . Then each  $\pi_n$  is a partition of  $\Omega$ , and  $\pi_{n+1}$  refines  $\pi_n$ .

Note that  $\pi_1 = \{E_1, \Omega \setminus E_1\}$ . Let  $\phi(E_1) = [0, \lambda(E_1)]$ , and let  $\phi(\Omega \setminus E_1) = (\lambda(E_1), 1]$ .

Now suppose  $\varphi$  has been defined on  $\pi_n = \{F_1, \dots, F_m\}$  to M, say  $\varphi(F_i) = I_i$ , where  $\{I_1, \dots, I_m\}$  is a partition of [0,1]

into intervals such that  $m(I_i) = \lambda(F_i)$ ,  $i = 1, \ldots, m$ . Let  $\pi_{n+1} = \{G_1, \ldots, G_p\}$ . Recall that  $\pi_{n+1}$  refines  $\pi_n$ . We may assume  $F_1 = \bigcup_{j=1}^n G_j$ . Choose  $\{J_1, \ldots, J_q\}$ , a partition of  $I_1$  into intervals such that  $m(J_j) = \lambda(G_j)$ ,  $j = 1, \ldots, q$ . Let  $\phi(G_j) = J_j$ ,  $j = 1, \ldots, q$ . Define  $\phi$  on the rest of the members of  $\pi_{n+1}$  similarly.

By induction,  $\phi$  is defined on all of U  $\pi_n$ . If A is in A(E), then by 1.1.2 and 1.1.3, A is the (disjoint) union of members of a partition  $\pi_n$  for some n, say A = U  $F_1$ , where the  $F_1$ 's are members of  $\pi_n$ . Let  $i \in I$   $\phi(A) = U$   $\phi(F_1)$ .

We have now defined  $\phi:A(E)\to M$  such that it preserves the algebra operations and it preverves measure. Define  $\overline{\phi:A(E)}\to M/m, \text{ where } \overline{A(E)}=\{\overline{E}\in \Sigma/\lambda: E\in A(E)\}, \text{ by}$ 

$$\overline{\varphi(E)} = \overline{\varphi(E)}$$
 (E \(\int A(E)\).

Then  $\phi$  is an isometry and hence extends uniquely to an isometry

$$\psi:\Sigma/\lambda \to M/m$$

since  $\overline{A(E)}$  is dense in  $\Sigma/\lambda$ .

We verify that  $\psi$  is an isomorphism. Let E and F be in E, and choose  $\overline{E}_n$ ,  $\overline{F}_n$  in  $\overline{A(E)}$  such that  $\overline{E}_n \to \overline{E}$  and  $\overline{F}_n \to \overline{F}$ . Then

$$\psi(\overline{E} \cup \overline{F}) = \psi(\lim (\overline{E}_n \cup \overline{F}_n))$$

$$= \lim \psi(\overline{E}_n \cup \overline{F}_n)$$

$$= \lim \psi(\overline{E}_n) \cup \psi(\overline{F}_n)$$

$$= \psi(\overline{E}) \cup \psi(\overline{F}),$$

since  $\psi$  is an isometry. Similarly  $\psi(\overline{\Omega}\backslash \overline{E}) = \overline{[0,1]} \psi(\overline{E})$  and  $m(\psi(\overline{E})) = \lambda(\overline{E})$ .

Finally, suppose  $\lambda$  is non-atomic. Let I be any interval in [0,1], and let  $\varepsilon > 0$  be given. By 2.2.7, we can partition  $\Omega$  into sets  $F_1, \ldots, F_m$  such that  $\lambda(F_1) < \varepsilon/4$  for each i. Choose n so large that each  $F_1$  is within  $\varepsilon/4$  of a finite union of members of  $m_n = \{G_1, \ldots, G_g\}$ . Then  $\max_j \lambda(G_j) < \varepsilon/2$ , and so  $\{\phi(G_1, \ldots, \phi(G_g))\}$  is a partition of [0,1] into intervals such that  $\max_j m(\phi(G_j)) < \varepsilon/2$ . Let  $A = \bigcup_j G_j$  for  $\phi(G_j) \cap I \neq \emptyset$ . Then  $m(I \land \phi(A)) < \varepsilon$ . It follows that there exists a sequence  $\{\overline{A}_n\}$  in  $\Sigma/\lambda$  such that  $\psi(\overline{A}_n) + \overline{I}$  in M/m. Since  $\psi$  is an isometry and  $\Sigma/\lambda$  is complete,  $\overline{A}_n \to \overline{A}$  for some A in  $\Sigma$ . Hence  $\overline{I} = \psi(\overline{A})$ . This proves that  $\psi(Z/\lambda)$ 

includes  $\{\overline{I}: I \text{ is an interval in } [0,1]\}$ ; it is also closed under countable unions and complements, and it follows that  $\psi(\Sigma/\lambda)$  includes all of M/m.

- 2.2.11 If  $\lambda \in \operatorname{ca}^+(\Sigma)$  is purely stomic, then  $\Sigma/\lambda$  is isomorphic to either  $2^N/\nu$  or  $2^{\{1,\ldots,n\}}/\nu$  for some n, where  $\nu$  is some measure. Thus, it follows from 2.2.8 and 2.2.9 that whenever  $\Sigma$  is countably generated and  $\lambda$  is in  $\operatorname{ca}^+(\Sigma)$ ,  $\Sigma/\lambda$  is isomorphic to one of
  - (a) the measure algebra of some interval [0,2] with Labesgue measure.
  - (b) the measure algebra  $2^J/\nu$  for some  $J \subseteq N$  and (c) a "direct sum" of (a) and (b).
- 2.2.12 THEOREM. If  $\lambda$  is in ca<sup>+</sup>( $\Sigma$ ) and  $\lambda$  is not purely atomic,

  then there exist  $\varepsilon > 0$  and a sequence  $\{E_n\}_1^{\varepsilon}$  in  $\Sigma$  such that  $\lambda(E_n \wedge E_m) \ge \varepsilon$  for  $n \ne m$ . In particular,  $\Sigma/\lambda$  is not compact.

PROOF. If  $\lambda$  is not purely atomic, then by 2.2.8 we can find  $A_{0_1}$  in  $\Sigma$  such that  $\lambda(A_{0_1})>0$  and  $A_{0_1}$  contains no atoms. By an induction argument using 2.2.7 (or 2.2.6), we can find a doubly-indexed collection  $\{A_{ni}:n=0,1,2,\ldots;1\leq i\leq 2^n\}$  in  $\Sigma$  such that for every n and i,  $\lambda(A_{ni})=\frac{1}{2^n}\lambda(A_{01})$  and  $A_{ni}$  is the disjoint union of  $A_{n+1,2i-1}$  and  $A_{n+1,2i-1}$ . Let

$$E_{1} = ^{A}_{11},$$

$$E_{2} = ^{A}_{21} \cup ^{A}_{23},$$

$$E_{3} = ^{A}_{31} \cup ^{A}_{33} \cup ^{A}_{35} \cup ^{A}_{37},$$

$$\vdots$$

$$^{A}_{31} = ^{A}_{32} \cup ^{A}_{33} \cup ^{A}_{35} \cup ^{A}_{35} \cup ^{A}_{37},$$

$$\vdots$$

$$^{A}_{31} = ^{A}_{32} \cup ^{A}_{33} \cup ^{A}_{35} \cup ^{A}_{36} \cup ^{A}_{37} \cup ^{A}_{38}$$

$$\vdots$$

$$Then for  $n \neq m$ ,  $\lambda(E_{n} \triangle E_{m}) = \frac{1}{2} \lambda(A_{01}).$$$

2.5.1

### 2.3 THE INTEGRAL

2.3.1. We let  $\mathcal{J}(\Sigma)$  denote the space of all E-simple functions.

If  $f = \sum_{i=1}^{n} c_i x_{E_i}$  is in  $\mathcal{J}(\Sigma)$ , its )-integral is defined by

$$\int r d\lambda = \sum_{i=1}^{n} \alpha_i \lambda(E_i).$$

It is easily established that this is a well-defined (positive) linear functional on  $\mathcal{J}$  ( $\Sigma$ ). Moreover,

$$\|\mathbf{r}\|_{\mathbf{L}} = \int |\mathbf{r}| \mathbf{a}_{\mathbf{L}}$$

is a pseudo-metric for  $\mathscr{L}(\Sigma)$  with respect to which the integral is continuous. In fact,  $\|f\|_{L^2} \le \|f\|_{L^2}$ 

We can abstractly complete this space in the usual way: the completion consists of all equivalence classes  $[(f_n)_1^\infty] \text{ of } \|\cdot\|_1 \text{- Cauchy sequences } [f_n]_1^\infty \text{ in } \mathscr{A}(\Sigma), \text{ where } \{f_n\} \text{ is equivalent to } [g_n] \text{ provided } \|f_n - g_n\|_1 \to 0.$  The norm of  $[\{f_n\}]$  is given by  $\|[\{f_n\}]\|_1 = \lim_{n \to \infty} \|f_n\|_1.$ 

The integral extends to the completion by

$$\int [(x_n)] d\lambda = \lim_{n \to \infty} \int f_n d\lambda$$

The integral is a continuous linear functional on the completion.

2.3.1.

We shall identify this completion with a certain linear subspace of  $h(\Sigma) \ / \ n(\lambda)$ .

Suppose  $\{f_n\}$  is a  $\|.\|$ -Cauchy sequence in  $\mathcal{J}(\Sigma)$ . Then it is Cauchy in  $\lambda$ -measure, so there exists f in  $\mathbb{M}(\Sigma)$  such that  $f_n \to f$  in  $\lambda$ -measure. If  $\{g_n\}$  is equivalent to  $\{f_n\}$  and  $g \in \mathbb{M}(\Sigma)$  is such that  $g_n \to g$  in measure, then since  $f_n - g_n \to 0$  in measure, f = g a.e. $\{\lambda\}$ . Hence to each member  $\{\{f_n\}\}$  of the abstract completion of  $\mathcal{J}(\Sigma)$  there corresponds a unique  $f + \mathbb{M}(\lambda)$  in  $\mathbb{M}(\Sigma)/\mathbb{M}(\lambda)$  such that  $f_n \to f$  in measure. In fact, by 2.1.8, we may choose the representative  $\{f_n\}$  of  $\{\{f_n\}\}$  such that  $f_n \to f$  a.e. The map  $\phi: \{\{f_n\}\} \to f + \mathbb{M}(\lambda)$  is well-defined (and clearly linear) on the abstract completion of  $\{\{f_n\}, \|.\|\}$  into  $\mathbb{M}(\Sigma)/\mathbb{M}(\lambda)$ .

We next show that  $\varphi$  is one-to-one. Suppose  $(f_n)_1^{\infty}$  is a Cauchy sequence in  $f(\Sigma)$  and suppose  $f_n \to 0$  in measure. Since  $\varphi$  is linear, we need only show  $\|f_n\|_1 \to 0$ . Given  $\varepsilon > 0$ , choose N such that  $m,n \ge N \Rightarrow \int |f_n - f_m| d\lambda < \sqrt[4]{3}$ . Now fix  $n \ge N$ . We will show  $\int |f_n| d\lambda < \varepsilon$  which will establish the result. Note that for any set A,

 $\int |f_n|_{X_A} d\lambda < \|f_n\|_{\infty} \lambda(A),$ 

so there exists 5 > 0 such that

$$\lambda(A) < \delta \rightarrow \int |f_n| \chi_A d\lambda < \epsilon/3$$

Since  $f_m \to 0$  in measure, there exists  $m \ge N$  such that  $\lambda\{\omega\colon |f_m(\omega)| \ge \varepsilon/3\lambda(\Omega)\} < \delta.$ 

Thus if 
$$A = \{\omega : |f_m(\omega)| \ge \epsilon/3 \ \lambda(\Omega), \text{ then}$$

$$\int |f_n| d\lambda = \int |f_n| \chi_A d\lambda + \int |f_n| \chi_{\Omega A} d\lambda < \frac{\epsilon}{3} + \int |f_n - f_n| \chi_{\Omega A} d\lambda$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3\lambda(\Omega)} \ \lambda(\Omega \setminus A) \le \epsilon . \qquad + \int |f_n| \chi_{\Omega \setminus A} d\lambda$$

Hence \( \phi \) is one-to-one.

2.3.2. DEFINITION. A function f in  $M(\Sigma)$  is  $\lambda$ -integrable if and only if there exists  $(f_n)_1^{\infty} \subset \mathscr{J}(\Sigma)$  such that

(i) 
$$f_n \rightarrow f$$
 a.e.  $[\lambda]$ ,

and

(11) 
$$\{f_n\}_1^{\infty}$$
 is  $\|.\|_1$  - Cauchy.

In this case the  $\lambda$ -integral of f is (uniquely) defined by

$$\int f d\lambda = \lim \int f_{n} d\lambda.$$

Thus  $f \in h(\Sigma)$  is  $\lambda$ -integrable if and only if  $f + h(\lambda)$  is in the range of  $\phi$ . We let

 $L^{1}(\lambda) = (f + h(\lambda))$ : f is  $\lambda$ -integrable).

As is customary, we identify (or confuse) functions f with equivalence classes  $f + h(\lambda)$ .

Note that if  $\{f_n\}$  is a  $\|\cdot\|$ -Cauchy sequence in  $\mathcal{J}(\Sigma)$ , then so is  $\{|f_n|\}$  (since  $||f_n|-|f_m||\leq |f_n-f_m|$ ). If  $f_n-f$  a.e., then  $|f_n|-|f|$  a.e. The extension of the  $\|\cdot\|$ -norm from  $\mathcal{J}(\Sigma)$  to its completion is given by

 $\|[\{f_n\}]\|_1 = \lim_{n \to \infty} \|f_n\|_1 = \lim_{n \to \infty} \int |f_n| d\lambda = \int |f| d\lambda.$ 

Thus when the norm is carried over to  $L^1(\lambda)$ , we have  $\|f\| = \int |f| d\lambda$  for all  $\lambda$ -integrable f. Hence, by construction,  $L^1(\lambda)$  is a Banach space under the norm  $\|f\| = \int |f| d\lambda$ .

If f is  $\lambda$ -integrable and  $f \ge 0$ , we can choose  $f_n$  in  $\mathcal{J}(\Sigma)$  such that  $f_n \to f$  a.e. and  $\{f_n\}$  is  $\|\cdot\| - \mathrm{Cauchy}$ . Then  $|f_n| \to |f| = f$  a.e. and  $\{|f_n|\}$  is  $\|\cdot\| - \mathrm{Cauchy}$ . Hence  $\int f d\lambda = \lim \int |f_n| d\lambda \ge 0$ , and so the integral is a positive linear functional on  $L^1(\lambda)$ .

Also, if f is in  $h(\lambda)$  and  $f \ge 0$ , then f is  $\lambda$ -integrable if and only if

if finite. (If s is finite, choose  $(g_n) \subset f(\Sigma)$ ) such that:  $0 \le g_n$  if a.e. Then  $\int g_n d\lambda$  is some limit, and hence  $(g_n)$  is  $\|.\|$  - Cauchy.) Thus if  $0 \le f \le h$  and h is integrable, then f is integrable. It follows that for f measurable, f is integrable if and only if |f| is integrable. For notational purposes, if f is in  $h(\Sigma)$  and  $f \ge 0$ , we let

 $\int f d\lambda = \sup \left( \int g d\lambda : 0 \le g \le f \text{ a.e., } g \in \mathcal{J}(\Sigma) \right) \le \infty.$ 

2.3.3. A sequence  $(f_n)$  in  $L^1(\lambda)$  is said to <u>converge in mean</u> to  $f \in L^1(\lambda)$  (respectively, is <u>Cauchy in mean</u>) provided  $\|f_n - f\|_1 \to 0$  as  $m, n \to \infty$ .)

If  $f_n \to f$  in mean, then  $\int f_n d\lambda \to \int f d\lambda$  (but not conversely) and  $f_n \to f$  in measure (but not conversely).

2.3.4. THEOREM. (The Monotone Convergence Theorem).

If  $(f_n)$  is a sequence in  $L^1(\lambda)$  and if (i)  $f_{n+1} \ge f_n$  a.e.,  $\forall n$ ,

then  $f_n$  converges in mean and a.e. to some member of  $L^1(\lambda)$ .

PROOF.  $\{\int f_n d\lambda \}$  is monotone increasing by (i) and hence has a limit by (ii). It follows that  $\{f_n\}$  is Cauchy in mean.

2.3.5. COROLLARY. If  $\{f_n\}$  is a sequence in  $h(\Sigma)$ ,  $f_n \ge 0$ a.e., and  $f_{n+1} \ge f_n$  a.e. for all n, then

 $\int \left(\lim_{n\to\infty} f\right) d\lambda = \lim_{n\to\infty} \int f_n d\lambda$ 

PROOF. Either  $(\int f_n d\lambda)$  is bounded or not.

2.3.6. COROLLARY (Fatou's Lemma). If  $(f_n)$  is a sequence in  $\ln(\Sigma) \text{ and } f_n \geqslant 0 \text{ a.e. for all } n, \text{ then}$   $\int (\lim \inf f_n) \ d\lambda \leq \lim \inf (\int f_n d\lambda).$ 

PROOF.  $\int (\lim \inf \ell_n) d\lambda = \int [\lim \inf \ell_n] d\lambda$ 

 $= \lim_{m} \int (\inf_{n \in m} f_n) d\lambda$   $\leq \lim_{m} \inf_{n \geq m} (\int f_n d\lambda)$   $= \lim_{n \in m} \inf (\int f_n d\lambda).$ 

2.3.7. THEOREM (Lebesque's Dominated Convergence Theorem).

5.3,5

If  $(f_{\chi})$  is a sequence in  $L^{1}(\lambda)$ , if g is in  $L^{1}(\lambda)$ , and if

(i) 
$$f_n \rightarrow f$$
 s.e.

and

(ii) 
$$|f_n| \le g$$
 a.e., all n,

then i is in  $L^1(\lambda)$ , and

$$\int f d\lambda = \lim \int f_n d\lambda$$
.

PROOF. Since  $|f| = \lim |f_n| \le g$  s.e., f is in  $L^1(\lambda)$ .

Next,  $0 \le g + f_n$  and  $g + f_n - g + f$ . By Faton's lemma.

$$\int f d\lambda = \int (g + f) d\lambda - \int g d\lambda$$

$$\leq \lim \inf \left( \int (g + f_n) d\lambda \right) - \int g d\lambda$$

$$= \lim \inf \left( \int f_n d\lambda \right).$$

By symmetry,

$$\int (-f) \mathrm{d}\lambda \leq \lim \inf \int (-f_n) \mathrm{d}\lambda = -\lim \sup \left(\int f_n \mathrm{d}\lambda\right),$$

so that

 $\lim\sup \int f_n d\lambda \leq \int f d\lambda \leq \lim\inf \int f_n d\lambda.$ 

2.3.7.

2.3.8. NOTATION. If f is  $\lambda$ -integrable (or measurable and non-negative), and if E is in  $\Sigma$ , then

$$\int_{E} f d\lambda = \int f \chi_{E} d\lambda.$$

2.3.9. COROLLARY (Absolute Continuity of the Integral). If  $(E_n) \ \underline{is} \ \underline{a} \ \underline{sequence} \ \underline{in} \ \Sigma \ , \ \underline{and} \ \underline{if} \ \lambda(E_n) \to 0, \ \underline{and} \ \underline{if}$   $\underline{f} \ \underline{is} \ \underline{in} \ L^1(\lambda), \ \underline{then}$ 

$$\lim_{n\to\infty}\int_{E_n}fd\lambda=0$$

PROOF.  $|f| \ge |\chi_{E_n} f| \to 0$  in measure. Every subsequence must have a sub-subsequence converging a.e. to 0, and the integrals converge to 0 by 2.3.7. Thus we must have

$$\int_{E_n} ra\lambda = \int_{E_n} ra\lambda = 0.$$

2.3.10. EXERCISES. (1) If f is in  $L^1(\lambda)$ , then

$$\lim_{\lambda(E) \to 0} \int_{E} f d\lambda = 0$$

in the sense that for every  $\varepsilon>0$  there exists  $_{\delta}>0$  such that  $\lambda(E)<\delta$  implies  $|\int_{E}fd\lambda|<\varepsilon$  .

(2) If f is in  $L^2(\lambda)$ , then  $E = \int_E f d\lambda$  is continuous on  $(\Sigma, d)$  to R.

(3) Use Egoroff's theorem and 2.1.8 to prove that if g is in  $L^2(\lambda)$ , then in the set

$$(f \in L^1(\lambda) : |f| \leq g),$$

convergence in mean and convergence in measure coincide. Hence Lebesque's Dominated Convergence
Theorem.

2.4 MEASURES ON COMPACT BAUSDONFF SPACES.

Throughout this section let  $\Omega$  denote a compact Hausdorff space (CM2-space).

- 2.4.1. The class of Baire subsets of  $\Omega$  is the  $\sigma$ -algebra  $B(\Omega) \text{ generated by the compact } G_{\delta} \text{ sets in } \Omega.$  Every continuous function  $f:\Omega \to \mathbb{R}$  is  $B(\Omega)$ -measurable since  $f^{-1}(\mathbb{I})$  is a compact  $G_{\delta}$  for every closed interval  $\mathbb{I}$ .
- 2.3.2. Suppose K is any compact subset of  $\Omega$  and U is an open set with  $K \subset U$ . By Unysokn's lemms there exists a continuous function  $f:\Omega \to [C,1]$  such that  $f(\mathbf{k}) = (1)$  and  $f(\Omega \setminus U) = (0)$ . Thus there exists a compact  $G_{\delta}$

$$K_{O} = \{w : \mathcal{L}(w) = 1\}$$

and an open Baire set

$$U_0 = (\omega : f(\omega) > \frac{1}{2})$$

such that

$$K \subset K_0 \subset U_0 \subset U_0 \subset U_0$$

In particular,  $B(\Omega)$  contains a base for 1 (opology of  $\Omega$ .

2.4.3. THEOREM. If I is any stalled in O les contains a base for the topology of the the E(n)=5.

PROOF. Let K be a compact  $G_{\delta}$ ; say  $K = U_{\epsilon}$ , where  $U_{\epsilon}$  is open. Since  $\Sigma$  contains a base for he topology, and since K is compact,  $W_{\epsilon} \in \Sigma$  such that  $K \subset V_{\epsilon} \subseteq U_{\epsilon}$  for each n. Hence  $K = \{ -1 \}$  is in  $\Sigma$ 

2.4.4. THEOREM. Every compact set in B(n) is a W.

PROOF. Let C be a compact set in  $B(\Omega)$  has  $E(C_n)_{2}^{\infty}, \text{ a sequence of compact } G_0 \text{ a such that }$   $C \in E\left(\{C_n\}\right)$ 

(by 1.1.3). By Urysonn's lemma, for each  $n \in \mathbb{R}$  continuous function  $f_n: \Omega \to \{0,1\}$  such that

$$c_n = (\omega : x_n(\omega) = 0).$$

Define a pseudo-metric d on G by

$$\mathcal{C}(X,Y) \approx \mathcal{C}(X,Y) \approx \mathcal{C}(X,Y) = \mathcal{C}$$

Note that the identity map  $1:\Omega \to \Omega$  is continuous from the given topology to the d-topology on  $\Omega$ . Hence C is d-compact.

Now let  $\pi:\Omega-\Omega/d$  be the natural quotient map, where  $\Omega/d$  is the space obtained from  $\Omega$  by identifying x and y if d(x,y)=0. Note that  $C_n=\pi^{-1}(\pi(C_n))$  since

$$\mathbf{x} \in \pi^{-1}(\pi(\mathbf{C}_n)) \Rightarrow d(\mathbf{x}, \mathbf{y}) = 0 \text{ for some } \mathbf{y} \text{ in } \mathbf{C}_n$$

$$\Rightarrow |f_n(\mathbf{x}) - f_n(\mathbf{y})| = 0 \text{ some } \mathbf{y} \text{ in } \mathbf{C}_n$$

$$\Rightarrow f_n(\mathbf{x}) = 0$$

$$\Rightarrow \mathbf{x} \in \mathbf{C}_n.$$

Let  $S = (\pi^{-1}(A) : A \subseteq \Omega/d)$ . Then S is a  $\sigma$ -algebra containing  $(C_n)$ , and so  $C = \pi^{-1}(A)$  for some set  $A \subseteq \Omega/d$ . Hence  $\pi^{-1}(\pi(C)) = C$ .

Now we show  $C = \bigcap_{n=1}^{N}$   $(y : d(x,C) < \frac{1}{n})$ , which will complete the proof. If  $d(x,C) < \frac{1}{n}$ ,  $\forall n$ , choose  $x_n \in C$  such that  $d(x,x_n) \to 0$ . Since C is d-compact, we can assume  $x_n \stackrel{d}{=} x_0 \in C$ . Then  $d(x,x_0) = 0$ , so  $x \in \pi^{-1}(\pi(C)) = C$ .

2.4.5. For the remainder of this section, let  $\lambda$  be a member of ca<sup>+</sup>(B( $\Omega$ )).

- 2.4.6. THEOREM. (Regularity of Bairs measures). For every set E in  $B(\Omega)$ 
  - (1)  $\lambda(E) = \inf \{\lambda(U): U \text{ is an open Baire set, } E \subset U\}.$  end (11)  $\lambda(E) = \sup \{\lambda(E): K \text{ is a compact } G, K \subset E\}.$

PROOF. Let R denote the collection of all sets  $E\in B(\Omega)$  satisfying (i), and let X denote the collection of all compact  $G_{\xi}$ 's. Clearly  $X\subset R$ . We note the following facts:

- $(1) \quad \text{If } (E_n)_1^\infty \subset \mathbb{R}, \quad \text{then } \bigcup_{n=1}^\infty E_n \in \mathbb{R}. \quad [\text{For each } n]$  choose an open Baire set  $U_n \quad \text{with } E_n \subset U_n \quad \text{and}$   $\lambda(U_n \setminus E_n) < \frac{\varepsilon}{2^n} \cdot \quad \text{Then } \quad \lambda[(UU_n) \setminus (UE_n)] \leq \lambda[U(U_n \setminus E_n)] < \varepsilon.)$
- (2) If  $(E_n)_L^\infty \subset \mathbb{R}$  and  $E_n \searrow E$ , then  $E \in \mathbb{R}$ . [Choose n such that  $\lambda(E_n) < \lambda(E) + \frac{\varepsilon}{2}$  and then choose  $U \supset E_n \supset E$  such that  $\lambda(U) < \lambda(E_n) + \frac{\varepsilon}{2} < \lambda(E) + \varepsilon$ .]
- (3) If C,D are in K, then  $C \setminus D$  is in K. IChoose U open with  $C \subset U$  and  $\lambda$  (U\C)  $\in E$ . Then  $U \setminus (C \cap D)$  is open,  $(C \setminus D) \subset U \setminus (C \cap D)$  and  $\lambda((U \setminus (C \cap D)) \setminus (C \setminus D) = \lambda(U \setminus C) < E$ .]

Since K is closed under finite unions and intersections, (3) and (1) together with 1.1.2 and 1.1.3 shows that the algebra generated by K is contained in  $\mathbb{R}$ .

- But (1) and (2) imply & is a monotone class, so by 1.1.5,  $E(\Omega) \subset \mathbb{R}$ . This proves (i), and (ii) follows from (i) by complementation.
- 2.4.7. Let  $C(\Omega)$  denote the linear space of all continuous functions  $f\colon \Omega \to \mathbb{R}$ . Since every such f is  $B(\Omega)$ -measurable and bounded, it is integrable. The function  $\phi: C(\Omega) \to \mathbb{R}$  given by  $\phi(f) = \int f d\lambda$  is then a well-defined positive linear functional on  $C(\Omega)$ .
- 2.4.8. THEOREM. (The Riesz Representation Theorem). If  $\phi$ is a positive linear functional on  $C(\Omega)$ , then there

  exists a unique Baire measure  $\lambda \in ca^{+}(B(\Omega))$  such that  $\phi(f) = \int f d\lambda$

for every f in  $C(\Omega)$ .

PROOF. The proof is omitted - see notes and references section.

2.4.9. A  $CT_2$  - space  $\Omega$  is totally disconnected if and only if for every open set. U and every point x in U there exists a set V which is both open and closed (i.e., clopen) such that  $x \in V \subset U$ . That is, the clopen sets

7 ....

form a base for the topology of O.

If  $\Omega$  is totally disconnected, the collection G of all clopen sets forms an algebra. Clearly  $G \subseteq B$   $(\Omega)$  since every clopen set is a compact G. On the other hand, G contains a base for the topology of  $\Omega$ , and thus by 2.4.3,

 $B(\Omega) = \Sigma(\Omega)$ .

2.4.10. PROPOSITION. Let  $\Omega$  be totally disconnected and let  $\Omega$  be the algebra of clopen sets. If  $(E_n)_1^\infty$  is a disjoint sequence in  $\Omega$  and if  $\Omega$   $E_n$  is in  $\Omega$ , then all but finitely many  $E_n$ 's are empty.

PROOF. The non-empty mambers of  $\{E_n\}_1^\infty$  form an open cover of  $\bigcup_{n=1}^\infty E_n$  which has no finite subcover.

- 2.4.11. COROLLARY. If O is totally disconnected and G is the algebra of clopen sets, then every finitely addition measure on G is countably additive.
- 2.4.12. COROLLARY. If  $\Omega$  is totally disconnected and  $\Omega$  is the algebra of clopen sets, then every member of be  $\Omega$  has a unique extension to a member of  $\Omega$  ca $\Omega$ .

#### 2.2.2. PEWARKS AND RETURNAL

- (1) Frechet [1919] first introduced and studied the pseudo-metric: Pon M(E) as considered here.

  bounded. If it
- (2) Note that throughout this chapter, λ is allowed to take the value
  \* one must be slightly more careful. For example, the function n in
  2.1.1 can be defined in this case by

$$n(f) = \inf \{ arc \ tan \ [ \ f + \lambda \ \{w: \ (f(v)) \ge \ f \} \} \},$$

and it is them real-valued and keeps the same properties (see e.g., Dunford and Schwartz [1958, p. 101 ff].

If  $\lambda$  is allowed the value  $+\infty$ , Egoroff's theorem (2.1.6) fails, and so does 2.1.7. However, 2.1.8 and 2.1.9 remain valid in this setting (see Halmos [1950, §22]).

(3) Egoroff's theorem (2.1.6) is generalized to strongly measurable X-valued functions later (6.2.3), and so are 2.1.7, 2.1.8, and 2.1.9 (see 6.2.22, 6.2.23, and 6.2.24).

#### R.2.2. REMARKS AND REFERENCES

- (1) Theorems 2.2.6 and 2.2.7 are special cases of Liapounov's theorem which states that the range of a finite dimensional non-atomic measure is closed and convex (see Liapounov [1940]).
  - (2) Theorem 2.2.10 was proved by Halmos and von Neumann [1942].

(3) In regard to Theorem 2.2.12, it is in fact true that  $\Sigma/\lambda$  is compact if and only if  $\lambda$  is purely atomic. (A quick proof can be given by considering the measure  $v: \Sigma + L^1(\lambda)$  given by  $v(\Xi) = \mathcal{R}_{\Xi}$  and using 7.1.4, 7.3.1, and 8.1.4 below. More elementary proofs can of course be found.)

Additional References: Hoffmann-Jørgensen [1971]

# R.2.3. REMARKS AND REFERENCES

This is one of many approaches to the abstract Lebesque integral. The results here are standard material from courses in Real Variables; the theory of course generalizes to the case of the unbounded  $\lambda$ , see e.g. Halmos [1950].

# R. 2.4. REMARKS AND REFERENCES

- (1) There is a wast theory concerning regular measures on compact and locally compact spaces. (For a beginning, see Halmos [1950].) We chose here only some results of immediate interest.
- (2) A complete, very direct proof of the Riesz Representation Theorem (2.4.8) can be found in Rudin [1966].
- (3) The material on totally disconnected spaces (2.4.9-2.4.12) will prove useful in §4.3ff.

Additional References: Dinculesnu and Kluvanek [1967]