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i. INTRODUCTION

iel. CIagnén 6f;5etn

Seled.

K

) A€A =W EA

and

(14) ABEA=A UR €A,

&n aagehra ia claaa& under Einitﬁ unianm and iutarsactionn and it contaius

# snd ﬁ.- An algebra A ia a cnalgabra ptovidad

(112) {A )y ch= nfl b €A

PR}

A o-algebra is closed ynder countable intersections.

In general we will denote an k;géhza afkseta by A and a o-algebra '

~of sets by 2. If E 4s any class of sets, let A(E) ‘dud“E(E)‘ denotae

| ig 3.;2»

the algebre and o-algebra generated by E, :éspaetively,

if E= {El"'°’ﬁn} is & finite collection of subssts of 8, the atoms

of E sre the sets of the form

A, = (N EINYU E)
165 1 gy 370

wvhere J rmnge@ ovar the eubsets of {lﬁ.a.,n} (If J = é,

J

hy = 2N vog g and 1 I = {l,e..,m), A= f E,.) The stoms form

fm} i=1

Recall that A (4 6)‘L@~an«gggg§zg_o£~subaatn‘af‘a set @ (4 4) provided o
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& finite partition of @ and every member of E is a union of atoms.

}E‘hle. collection of all unions of atome is the algebre 'ge,nemmd by’ E.

i

-9

1ele3. If € ie any collection of subsets of £, then
AGE) = UIACF) : F CE, F_ finite}.

Isa&aed, ‘the right hand side ia‘ an algebre which contains £ and is
‘contatned in A(E). Simtlarly, e !

Z(E) = U{Z(C): € € E, € countabie}. =
‘1.1.60 A collection M of subsets of R 4s called a monotone clags if it is

closed under limite of monotone sequences, i.e., if {&n}; is a sﬁémencg k

. ;
‘ig M with & 1 ©Ay i"o: a;l n (oz A bl > An for all n) then
f A (zespectively, U An) is in M.

n=1 : nml

A o-algebra is clearly a monotone class. The next proposition proves

very useful at times.

1.3.5. PROPOSITION. If A is an algebra of 'set:fey. then 2(A) is the smallest

Bonotone class containing A.

PROOF. Let M denote the smallest monotone class con’t:aiuing A, L.eo, |
M 1s the intersection of all monotone classes containing A. We need

only show that M 1s & o-slgebra sincs clesrly H c g(A).

£




M(F) = {E CQ:EVF €M, F\E € M, and EUF ¢ M}

Wote that JM€F§ ie a wmonotone class and ﬁhét-‘

LR

- ; ¢ H(F) = F € H(E).
We have
FeAwh cHF) =N cﬁ(r;s, S
%
PEA ECH=ECHE) =F ¢ H(®,
and finally this gxm
| E€M=Ac M(E)k- i < M(E).

Thus M is clcaed'under relative :omplamantg and finite unions, 80

M de both an algebra and & monatoﬁe class. Hence M is a owalgebra.ﬂ




=
/ :

e
;

iol-'&a

Let A be ati algebra of ‘aubsetﬁ‘s of SZ,, and let E be any

 subset of R. Let ?A«(E)} {respectively, '?g(E)») denotes

the coll&e:tiaﬁ of all countable (resp. finite) disjoint

: : ) ®
sequences W = "{En} in A for which Ec U E . For
L n’ "

T} end v, e (B in PUB)PR(D), et

wl\rft u{E QE}

| ‘?hgn‘ ‘111 V’Wz g in {E) ( {E)}. “Write “l = "2
~ 4f end only 1f w_ Vv v, -n'l. ';?hean‘ (E) { (E)) is &

‘ 1
directed set (in fact, it is an upper semi-lattice.)

We amn o‘fteu ‘consider nete whose domain are (E) ( (E))a :

Note that in the case E = Q, FA(E) {P{}(E)) is
simply the ml:!,ecuxm of all wunt&ble (finite) A-partitions
af Q. We write ?A( ) for PA{Q) (PG{Q)}.




1.4

1.2

’ l&z.zw

i. za:éa

‘dtéj’.aiuts gequence ﬁfAﬁ}; dn. A,

SET FUNCTIONS (= MEASURES)

Given an algebra A of sets, and & Banach space X, & function ‘¢§A - ¥

fe nmatid to be finitclx,addﬁtivé (f.&.) ﬁrnvﬁéad

CAB €A ANBe ¢~ uA Us) = w(A) + p(B).

Morecver, i is said to be countably additive (c.a.) provided for avery
: ]

0

U a eAwugu A}w S u(Ah ’
n=l ; n=l ael

whem tha lut infinite stm means  lim Z ;L(A 7, the limit being taken
Neoso: nml. : :

kim t.ha norm topaiogy of X.

Ye ghall ccc;asiunally cmamar aonmaegativs mal«vaiued meanuren
which may also take the value ey mg-. La‘baagua memum on & end

counting measure on arbitrary sets.

We let balA,X) denote the Banach space of a}ll ‘boun_de& foao mmu:u

wiA » X withy the 'Mifom DO,
M&L = gup {lu@)f:4 € Ad

The closed wbspace of b&(A K) mmeistmg ef all countably additive

menbers af ba (A,X) will be denoted by ca(ﬁ.,x).

For ease of notation we write baiﬂs) md ca(&) fox’ ba(A,ﬂ) and

ca(&,m‘, mn;pentivafly. Also, ba (ﬁs) and ca (ﬁa) denotes the sets of

nm«mgativa members of ba(A) eand ca:{&),

Remmkat sbout tmundednew. (1) A .now?mg&given realevalued £.8. neasure

?m A i@ of course bounded aummﬁmlwe Hovever, &bﬁra exist real-

vm:mgss £o%e @im © .8} mossurey vs slgebres which are aet wounded. [let

i
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1.2.6.

Wiy - x {even with X = B) which are not bounded (M.E. one ﬁa&éa is the

A denote the aipebra of all finite and uwfmim gubsets of R. Define

w oon A by u(é) =0,

‘“ﬁ{&i‘a”“"éaﬂ}? ol ﬂt and v%{a%{a‘l«’qno‘o‘,&n}) o "'ﬂf

'l'hm 4 is malwaluad and c.@ag, but not bounﬁed b

(2) Thre Hahn-Jordan decomposition theorem {see 53» belw} iﬁpliéw’

 that any reml—miu@ﬁ countably additive measure on a walgebra ie b@unded.'

*
1f pil -+ X u mm, then fm‘ each %  im K N x o wz -+ R 1s Celley

hence bounded. It then followe from the uniform baunﬁednew principle |

 {§A.2} that ia bounded. Thus any c.&. meagure on & g-algebra to a k

Banach space is sutom: aﬂ’g’be&n&e&a However, there exist f.a. msasures

existence ef & mmcontin\xouﬁ :m.mar functional on t:tm z}-smm functiomg

Bee &0‘10’2 bﬂlWo}

i

THEOREM (Extension Thecrem). If | g is s mmgmmﬁ member of ca(A),

thea 1 m;& unique extension to & c.8. measure W oon E(A) ,givmagx

N (z)w.nt I m; (B € I,

nﬂ

~ wheze c:he in g um 18 taken over all disjoimt sequences {E} in A wﬂ:h .

%GUE,.
- pel

 PROOF. (Outline). We sssume this result is familiar to the reader and '

enly outlime the proocf. For complete deteils, am.amygtw&w& tent.

P



1.2.5.

192 @ 61‘

pefine % on all subsets E of & by formula (£). Then m

: Q ,
‘is a Caratheodory outer meagure on 24 detey

(1) w(d) =0

() Acpce=0s RA) S B(B) < =,
and i ’
(i) & Ues i ME ), VE ) < 2%

n=1 a=l . 1

The clase of ail u—masutabm sets (.@,, all EC@ w’hi.c’h mtisfy

u{ls) ® ;L(A 1 E) + p(A\E} ¥a © Q) is a a»algeb::& on whi,e;h T is & Coﬁm .

masum. ‘ﬁ:e membem of A am az«-memurable, and 80 Z‘-(A) conaiata

of w—neasumbm wtaw Kam:e i tegtr:x.cmd e:o LAY i3 cede and wtem&a

Ho

‘Uniquenese can be proved ‘directly; it also 'fénws from 2.2.3

. below.||

A lattice of subsets of Q is & collection L which is closed under
f’initek unions and :i.nwraectinmﬁ. IE E is any collection of aubww af

a,‘ L(E) denotes the smallest lattiee wntaining Eo

mmm QExt:ensim Thaorem}, Let i. be a8 1attice of subsets of 8, ley

X Im 2 Banach space, and 1@&; Al =X be & functian such r.hat
MAUB) = M) + A(B) = MAN B)  (AB €L)

el

i’;ﬁﬁ‘% w G




if 6 isin L. If 9 isin L, let x, = M@); othervise let x

be an arbitrary member cof X.

There exists a unjque extemsion of X toc a finitely sdditive

1]

”vmeasqte wiA(L) - X such that u(R) = Xy

; PROOF, A standard indﬁcticn ‘aiz‘gxm‘gna: ghows that if Aysose ”An are -

in L, - then

My u... Ua) = b “n*s,,

=]

where for each 1 = 1,...,m,

; il
A
Bt
#
[
Tt
A
°

-

®

A
£l
Lol
(S
Byl
A
=]
Bl

S o= l{k{ (1) " X ﬁ ﬁj(i)}

In particular,

( if two such fumtioxw A agree on all the Ai 8
(#?‘i and on all their intersections, then they agree

on their unian.

~ We first prove the theorem if L is finite, say
L 'ﬂv{Li"""Lu}’ Without loss of genmerality assume ¢ is iz L

aad A($) = 0. For each atom (see 1.1.2)

&
4




{xen I»)-MIM LNCU 1] s Muu.uun}
te3 ¥ gpa 3 ger

UG = L 4E T
w 3) %g - Y ) ‘,4
5 ’A( n L, } w W(g) = 0 if 3 w{l,f“wn};

: iﬂl

and extend g to be additive on A(L) (= the set of all tmian& of

the atams ) We prove by (xeverse) :indui:tim on k= n,nwl,“..x

thﬁt. w:*' < {iggaegﬁ} “ﬁé gard {7‘ - i&?i‘iﬁ@
®m AN L) = ul 0 L.
: el 1ed ' itJ

If k = mn, then (*) holds by definition of We Now suppose (%}
holds for card (J) = k,k+l,...,n, where l<k &mn. Let K

be & subset of {l,...,n} with card (£¥) = k~1. Note that

(ﬂx.

i;su»uﬂ L)\(U L)ZUL(%J j)n(n z.)]
mc » |

1€K ﬁx : i€k

-wl(n L)\(U L)IU{U {Lmn LNl
gex Y ogdk 3 g tex b

J{ﬂa«' &:Ftn £;E~:.¥, :




By the induction hypothesis and (#};
pl U@, nin Ll =xay (z.,.j nen. L 1
R 4 dex 7 K i€kt

Therefore, by &eﬁnit&m of e

ua Mmgun L}\{b L)}M&U (L, NN Lm

18R 1€K x4 séx 4 gex
= {0 LU Lyl +ul U éLjﬂ{;i L]
1€E K ¥ e 4 ek
- u( n Ly Jo

€K

Letting J range over the singieten sets, {#) implies that y exteads
he Unigueness 1s clear from the &efinition, and this completes' the

proof of the theorem if [ dis fimite.

For the general case, recall that k~(’by 1:;1.;3}
ACL) » U{A(EYy: Ec L, E finitel.
By the above, for each finite E C L there is a unique f.a. e on

ALE) = A(L(E}) which extends AJLEEY. If E and y?‘ are two finite

subsets of [, then by uniqueness gz,ﬁfgg A (&) - “B and




wo ff o

Ny.EuFM(?)‘w ppi hence ug sgrees with pp on é(E} N A(F) There-

fore one can knit the u;E's together to obtain a function ALY = X3
clearly i 48 finitely additive, extends ), takes the valie X,

on &, and ig unique with respect to these properties. .




R.1.1. REMARKS AND REFERENCES

: Most of the results presented in these notes have extension‘s to cases
’where the measures 'have more general domains than algebras or*ﬂ-—&lgebrés
{(also called (Boale.an) fields and o-~fields) such &8 rings, O-rings, G-rings, |
V"~ecc. However, we ahall gtay wirh the basic cases in the Hotes, and only
c»:casiouaily pcim: auﬁt generalizaciana in the Remsrks. For a mwore mmplem J
discussion of va.riuus Mportam: typea ﬁf classes of am:s, seq e.g. Halmps

{1950, Chapter 1].
R.1.2. REMARKS AND ‘REFERE’NGES

{1) ‘As ‘ﬂith; dumains of the meagures (sée R.1.1), many‘aref the #émlta
presented "in these notes have ,extensic(ns ‘to cases where the ‘naasdreﬁa iiave
 more gener&l range spaces than Ba;nach’ sgaczase For eﬁc&mpla,g Theorem LZQQ

amd its proof hold if X is any addit:ive grcup, Hewgvie‘r‘, n the Hotes
" all our measuree: will take their: vamea in Bamch spacea. |

(2) The uaual {and aquivalem) stammem. of Theorem ”2 6 :ﬁ.a thac 2\
has & unique extenaion to a finitely kadditive function on ‘he ring .ffgeneamt&d
by Le "".E‘hebremi 2.6 was first fomally'atatedand prmézﬁ b}v B.J. Pettis

{1951, Th. 1. 2] and 4t has been x‘ediscovemd and pub‘* iahm seveml other
times (se:o:e I‘etti&a review of & zxroaf gﬁven by Lipecki (MAH REVIEWS, wﬁ.. M, ‘
#7586, p. 1377 mm;). The proof given here 1s due to loff [1969, wn-

pnblisheé}, it 18 simiiiar to t:'hat of Lipecki.

Additionsal Refereﬁces: Kisynski [1968], Huneycutt [1969].




