ABSTRACT. In this work we extend and continue the study of S. Paszkowski ([1],[2]) who considered the relationship between polynomials of best approximation and interpolating polynomials. More precisely, he studied the problem of approximating a given continuous function on an interval \([a, b]\) by elements of an \(n\)-dimensional Haar subspace, which were also required to interpolate to the function at certain prescribed points or nodes in \([a, b]\). He considered questions relating to the existence, uniqueness, and characterization of such best approximations.

We show that there is a complete analogy between this problem and the classical Chebyshev problem of approximating a continuous function by elements of an \(n\)-dimensional Haar subspace. That is, for each result valid in the classical case, there is a corresponding result valid for the more general problem.