ABSTRACT. Let \(\{G_k\} \) be a sequence of linear subspaces of a normed linear space \(E \). We want to characterize those sequences \(\{g_k\} \) in \(E \), with \(g_k \in G_k \) \((k = 1, 2, \ldots)\), for which there exists an \(x \in E \) such that

\[
g_k \in P_{G_k}(x) \quad (k = 1, 2, \ldots),
\]

where \(P_G(x) \) denotes the set of all elements of best approximation to \(x \) from \(G \), i.e., the set

\[
\{g_0 \in G \mid ||x - g_0|| = \inf_{g \in G} ||x - g||\}.
\]

This general study was motivated by a problem posed by T.J. Rivlin [5] who asked: Characterize (intrinsically) those \(n \)-tuples of polynomials \((p_0, p_1, \ldots, p_{n-1})\), with degree of \(p_j \) equal to \(j \) for all \(j \), for which there exists an \(x \in C[0, 1] \) such that the polynomial of best approximation to \(x \), from the space of polynomials \(P_j \) of degree at most \(j \), \(\Pi_{P_j}(x) \), is \(p_j \) \((j = 0, 1, \ldots, n - 1)\). What is the answer in the particular case where \(n = 2 \)?

We can give a complete (but not intrinsic) characterization of our general problem (Theorem 1). This allows us, for example, to get a complete characterization of the general problem in a Hilbert space when the subspaces \(G_k \) are increasing (Theorem 5), or when they are decreasing (Theorem 6). In \(C[0, 1] \), we answer Rivlin's second question as follows. Given \(p_j \in P_j \((j = 0, 1)\), there exists \(x \in C[0, 1] \) such that \(\Pi_{P_j}(x) = p_j \) \((j = 0, 1)\) if and only if \(p_1 - p_0 \) is either identically zero or changes sign once in \([0, 1]\).