ABSTRACT. When \(A \) and \(B \) are closed subspaces of a Hilbert space \(X \), and \(P_A \), \(P_B \) are the corresponding orthogonal projections, von Neumann showed that

\[
(I - P_A)(I - P_B)^n(x) \to (I - P_{A+B})(x) \quad (x \in X).
\]

This result is extended by replacing \(X \) with any smooth and uniformly convex Banach space, and \(A \) and \(B \) any closed subspaces whose corresponding metric projections \(P_A \), \(P_B \) are linear. Further, it is shown that (\(\alpha \)) holds whenever \(X \) is a uniformly smooth and uniformly convex Banach space and \(A, B \) closed subspace such that \(A + B \) is closed.