ABSTRACT. A theory of best approximation with interpolatory contraints from a finite-dimensional subspace \(M \) of a normed linear space \(X \) is developed. In particular, to each \(x \in X \), best approximations are sought from a subset \(M(x) \) of \(M \) which depends on the element \(x \) being approximated. It is shown that this “parametric approximation” problem can be essentially reduced to the “usual” one involving a certain fixed subspace \(M_0 \) of \(M \). More detailed results can be obtained when (1) \(X \) is a Hilbert space, or (2) \(M \) is an “interpolating subspace” of \(X \) (in the sense of [1]).