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The gradient coeflicients in the Landau-Gineburg theery are crucial for quantita-
five description of domain walls in ferroelectrics, The magnitude of these pradicnt
coefficients are a measure of nonlocal coupling strength of the pelarization. In this
paper, we intersd to explain the physical meaning of these gradient coeffcients in
teems ol lattice dynamics and give some relationships between these gradient
coefficients and the dispersion surface of the soft mode, The implications for the
study of over damped soft modes are alse discussed.

§1. Introduciion

Many ferroelectric materials have perov-
skite structure with a cubic symmetry in the
paraelectric phase. The symmetry of the low
temperature  ferroelectric  phase can  be
tetragonal, rhombohedral or orthorhombic.
Ferroelectric phases usually have more than
one variants and these variants may coherently
coexist within the symmetry frame of the par-
ent phase, forming the so called twin strue-
tures, It is shown that these twin stroctures
can be well described by Landan-Ginzburg
(L) type models.'” All the expansion
coclficients in the Landau theory correspond
to certain macroscopic physical quantities and
can be obtained experimentally. However, the
physical meaning of the pradient coefficients,
which regulate the domain wall formation and
control the domain wall width in the twin
structures, still needs to be specified,

A paraelectric-ferroelectric phase transition
is characterized by a softening of a transverse
optic mode at the Brillouin zone center due to
the cancelation of the long range Coulomb
forces and the short range repulsive forces.
The saflt mode is stabilized above the phase
transition temperature by the anharmonic in-
teractions whose strength weakens as the tem-
perature decreases. Using mean field theory,
one can still formally retain the terminology
of normal modes if the *“‘soft mode™ fre-
gquency is assigned to be temperature depen-
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dent.

Close to the phase transition temperature,
the dominant contribution in the lattice
Hamitonian is from the soft mode. Therefore,
one may simply study the solt mode behavior
to characterize the phase transition near 7.
For an inhomogeneous system, the spatial vari-
ation of the order parameler must be consi-
dered. This is done by adding an energy term
induced by the order parameter gradients. Be-
canse the inclusion of both nonlinear and non-
local terms in the energy expansion, one may
expect to obrain large amplitude soliton-like
solutions which can describe the domain walls
(the transition region between coherent twin
structures}),*™ The physical meaning of these
eradient coeflicients can be seen from the
study of small amplitude oscillations for
which the nonlocal coupling can be treated as
perturbations. " We will show in this paper
how these polarization gradients can be der-
ived from a simplified lattice dynamical
maodel.

Since polarization is the density of dipoles
per unit volume, it is proportional to the mag-
nitude of the associated optical mode. As will
be shown in the third section of this paper that
the lattice potential for a given optical mode
can be written in terms of the polarization vec-
tor, Therefore, the Landau-Ginzburg poten-
tial can be directly used in the lattice dynami-
cal calculations in the small representation of
the soft mode.
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; e S : ; where k is related to the temperature depend-
§2. Gradient Coefficients and Dispersion ent soft mode frequency, xo (F—1.), and

Surface of the Soft Mode (=1, 2, 3 are the components of the elgenvec-
From soft mode theory, the potential  tor of the soft mode. For the ferroelectric
energy for a cubic system may be expanded in - phase transition » is a relative displacement

terms of the eigenvector of the soft mode™ field.
¥ If & is inhomogenecus, we must include the
G=E (uiruitud) (1y  pgradienl energy in the energy expansion. For

_ cubic symmetry the gradient energy may be
. — written as follows,

dy g
GS-:-? {“T.I ‘l‘ﬂ%lz‘l‘”ﬁlj} - (Sutuu “1.1+“'|.| H_]I_'|+ M3 H_]Ig)

d
+Tw[{”l~1'|'”ll}j et o)t (ag s )) {2}

Assuming the effective mass for the mode is M then the equations of motion become

Mity o —dyw g —da(ta ) —dultptuae et =0, (3a)
Miby+wua—dnttan—da (ot ian) —du (s g et w2 ) =1, (3h)
Miyrrus—) wapn— iz (0 3+ t222) — daa (e 20T g T 2T @121 =0, (3e)

2. (3a-¢) have plane wave solution of the form

u=Uexp [jlwt—k-x)]. {4)
Substituting eq. (4) into eqs. (3a-c) gives the cigenvalue problem
Mw*U=D(k)U (5
where D (k) is the dynamical matrix
kA dn kit S (i+id) Sk ks Sk e
D{k)= ik ks KT8 ki du(ki+ED Sz ks ke (&
dia k) ko Skl e d ki Fa (kD)

If the depolarization ficld is included, the equations of motion (3a-cy will contain one more
term representing this contribution, which will split the longitudinal and transverse optical
modes.™™ The depolarization field is given by
(P-k) &

iy o

E{k)=— (7)
The additional contribution is a linear function of the polarization vector P which is propor-
tional to the relative displacement field . Adding eq. (7) to the r.h.s. of eq. (3a-c) leads o the
dynamical matrix for a given &, In what follows, we will treat three k-values in the three principle
directions of the k-space,
AL k=[k0,0]

Define 2= Zew,, where Z is a constant which has a unit of inverse volume and ¢ is the electron
charge unit, The meaning of Z will be clear from later derivations. For this & value, the dvnami-
cal matrix can be simplified 1o the following form

KA+t 0 0
biky= 0 K+ dak® 0 (8)
0 0 Skl
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where A is a constant defined by
A={1[e)Ze)'. (]

From eq. (8) one can easily derive the dispersion relations for the longitudinal (es,) and trans-
verse (o) modes respectively:

. l
L'.JE=E (ict+A+d k) {10a)

|
(,U?;:E (et k™) (10}

B, k=(&/'2)1,1,0]
The electrostatic force from the depolarization field is now given by

ZelP+ P At}
: 2 [lfl,fJ]——2 [1,1,0] {11

Theretore the dynamical matrix is

k+A[ 24+ (8 +du) k22 Al 248/ 27 0
Dik)= A2 (S D kA2 (5 k2 0 ) (12}
and the dispersion relations are
1 I :
w'i'_ﬁ [H"-l-fi { -2-'(511—-(511+§4-1}k‘] (13a)
1 1
w%-,=ﬁ [K +E (dy—dy-t ,:544),:;1] {13b)
I
'EU%-‘:E [Pf‘l‘(iqﬂkzl (]3'::]
Here the two transverse modes are not degenerate.
C. k=(k/v3)[1, 1, 1)
For this case the Coulomb foree from the depolarization field is
ZelPi Pt P Al bt
SO R o) R R TR g (14)
H-Er.- 3
and the dynamical matrix becomes
Dk)=
K+ A3 (0328 DK Al3+(8:/ Dk’ A3+ Dk}
( Af3(8/ Dk K+A3+(6, /34280 Dk’ Af3+(dp/ Dk
A3 H(da Dk Af3+ (8 DK it A3+ (03240 3K
(13)
The dispersion relations are therefore given 1 |
by W= ‘K'F_ (Sii—dit 28u)k? {1ob)
: M| 3
1 3 ; ; ’
mf_—-g r+A -I-% (31128 +2du) k* Note that the dispersion relations derived
) =

above are for the cubic phase near &A=0 but
{16a) not for the low temperature ferroelectric
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phase,

§3. The Expansion Cocllicients and Lattice
Dynamics
Taking the limit k—0 in the dispersion rela-
tions derived above, one finds that the
coefficient x/M becomes the soft transverse
mode frequency square,

lim wi=wx/M (17)
The longitudinal mode will not become soft at
T'=1T, because of the depolarization field con-
tribution 4,
. ] 'I'
Ll_tﬂﬂJ..""E{rH-A]l (18)
The simplest model to caleculate  these
coefficients in terms of microscopic quantities
15 to study the k=0 mode for a biatomic svs-
tem using rigid ion model, in which the soft
mode represents the relative displacement
field, the mass i5 the relative mass, and the
polarization is equal (o the ionic charge mulii-
plied by the relative displacement then devided
by the unit cell volume. However, in the perov-
skite structure there are three different types of
ions, hence, a more realistic model would be a
three body system model. In what follows we
will use a one dimensional rigid ion model for
BaTi(k; as an example to illustrace the relation-
ship berween the coellicients in eq. (1) and the
microscoplc guantities.

Fig. 1.
e,
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According to the structural work of Shirane
et al.,'"™ the soft optical mode in BaTiO, con-
sists of the relative motion of Titanium, Bar-
ium and Oxyeen (Fig. 1{a)). Because the center
of mass and the center of charge for cach Lype
of ions coincide, we can effectively treat this
swstem as a threesbody system in the lattice dy-
namical caleulations, For convenience the ion
groups are labeled as lollows (see Fig. 1{b):
Ba—I; Ti—2; and 30—3,

The potential energy represents the =0
mode for this three-body svstem is

) " iy
P=—{x—x)+— (xz_-h}z

5 5 (19

[n order Lo derive the equations of motion one
should alse consider the Lorentz field, which

leads to the following differential equations:

1
mnE = o xa) il (20a)
dey

[
M= (x—x—Klna o — @ P
3{:.'0

(20B)

1
Hhiﬁ:—!ﬂz{x;—xﬂ-kg i P (20e)
gubgatgi=0 (21
P=(q x, i x g f a (22)

where a; is the lattice constant, g, gz, s are
the charges of the three fon groups, P is the

Hn

Ti

aa

ik

(a} Hbustratron of the ionic displacements in BaTioy [rom rel. 10 (b Ooe dismensional model for the sofc
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polarization.
For convenience let us introduce two new
variables
H=X|— X, ¥=X1—X).

Using eqs. (21} and (22), and the new variables
i and o the equations of motion (20a-c) can be
simplified to become

H=au+hy (23a)
i=cu+tdv (23b)
where
Iy g @ lf,f|+t?2"'|
= s _FEangtiEe A
my desantomy My
ik £y N iz i f]‘;;f}’;'.\'l
b=————|7F o Mot |
\oms o g Jeaay ! oon )
ks g | @ "'qz"ll
o -
i jcua?}L miy oMy |
Fltk foa b i)
d= —|II I 2. — |4 qj’a(qiﬁull
. Mz My Jeaaph Mg g !

eqs. (23a, b) have the harmonic oscillator
solution

=t exp (Joad) (24)
=1y exp ( jot) (25}

and the eigenlrequency o is given by
W= é— [—a—d+ Vla+ .'J’}'Z —d{ad — be)l.

(26)

In any piven mode the relative displacement i
and » are proportional to each other. For the
coordinate system in Fig. 1, # and © always
have the same sign. Assuming one of the
modes, for example @, becomes soft at lower
temperatures due to the decrease of the
coupling strength between different ions, then,
the magnitude of & and v have the following
relationship;

i f cax SR
Ly (d —a+ vig+d)Y —dud—bc)ua

(27)

From eqgs. {217 and (22) the polarization P is
given hy

(Yol 63,

P=(quue-ga0)/ a}

= {m +;—; (d—a+ lat+d) --4{ad—hc]}l

sy (28)

Therefore, in this mode

Ze= [(;1 -I-% {d—at w"{a—|-d}1-—ri[ad—bc}]]

fai (29)

The value of £ can be obtained from pyroelee-
tric measurements and ¢ may be caleulated
from X-ray diffractions of the low and high
temperature phases, hence, Ze can also be ob-
tained experimentally.

Sinee # and £ are linearly proportional to u,
we could simplify the problem by constructing
a new single variable potential G=(x/ 23t
which gives rise to the following equation of
motion.

i=au- be

=% [—(a+d)— V{a+d)—4ad—be)lu

e 10

=¥ (30)
where & has the dimension of force constant
and M has the dimension of mass according to
the definition of @, &, ¢ and d. For a three
dimensional system, the constructed potential
which leads to eq. (300 will have the same form
as eq. (1) according to symmetry. Because # is
also proportional to the polarization P leq.
(28)], we may also wrile down the constructed
potential in terms of the polarization vector P,
which becomes the Landau potential for a ler-
roelectric svstem G=(x/2)P?, w=x/(Ze)".

For longitudinal vibrations, we have to add
the depolarization field (— P/ #q) to the equa-
tion of motion eq. (20a-¢), which will add a
positive contribution to the eigenfrequency
preventing it Lo become soft like the transverse
mode. Formally, the relationship hetween o,
and ¢y may be written as

A
M

wi =it (30)

where .4 is a positive constant rellecting the
contribution of the depolarization field.
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84, Summary and Conclusions

It is shown that the polarization gradient
cocllicients in the Landau-Ginzburg theory
can be directly related to the dispersion sur-
face of the soft moede. Therefore, their physi-
cal meaning becomes apparent. The correspon-
detice between the Landau theory and the
lattice dynamic potential was  illustrated
through a simple one dimensional rigid ion
madel for BaTi0, at £=0. Since the polariza-
tion and the relative displacement field have a
linear  relationship, the  polarization
coefficients in the Landau-Ginzburg theory
may be calculated from the measured disper-
sion curves near the soft mode, For cubic sym-
metry there are only three independent
gradient coefficients, the dispersion anisotropy
of the soft mode can be determined through
measurements along the three principal direc-
tions. These gradient coellicients in principle
can be obtained through inelastic neutron scat-
tering experiments. However, in many cases
these dispersion curves are very difficult to
measure because of the high transition temper-
ature. To my knowledge, a complete set of the
dispersion relations do not exist in the litera-
tures for the known ferroelectric materials,
One of the intentions of this paper is to re-gm-
phasize the importance to measure these dis-
persion curves which can be used for the study
of domain walls in ferroelectrics.

An interesting point should be also men-
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tioned is the possibility of obtaining the disper-
sion surface of the soft mode through direct
measurements on the demain wall profiles,™
because the gradient coeliicients can be ex-
tracted from fitting the measured polarization
profiles to the soliton-like solutions of non-
linear nonlocal continuous medium theory,>®
This could be very useful to study the disper-
sion surface of the over damped soft mode,
such as in BaTiCkh, which can not be obtained
through inelastic neutron scattering.
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