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Piezoelectric Ceramic—Polymer Composites
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Abstract—The static equilibrium conditions have been derived
for piezoelectric-ceramic-polymer composite structures. Rigorous
solutions are obtained for a 2-2 composite of lamellar config-
uration. Under a uniaxial stress or an electric field the stain
profile becomes inhomogeneous due to different elastic stiffness
of the two components (hard piezoelectric ceramic and soft
polymer). The stress transfer between the two components is
identified as due to an additional shear stress produced at the
ceramic- polymer interface, and the amplification factor is defined
for the enhancement of the response of the active piezoelectric
ceramic resulting from this stress transfer. It is shown that this
enhancement effect not only depends on the volume percentage
of the active component but also depends on the aspect ratio of
the two components.

1. INTRODUCTION

OMPOSITE piezoelectric materials are usually made
of active piezoelectric ceramic (such as lead zirconate
titanate (PZT)) rods or plates embedded in a passive polymer
matrix. The shape of the active and passive components vary
according to the application requirements. The composites are
usually categorized according to their connectivity [1].
Combining the merits of both components and utilizing the
interface effect in an integrated structure of hard and soft
materials, the composite piezoelectric materials are proved to
be an excellent new class of transducer materials for medical
imaging and under water hydrophone applications [2), [3]. The
advantage of the ceramic—polymer composite structures is the
adjustability of their physical properties, such as density, elas-
tic compliance, dielectric properties, piezoelectric properties,
acoustic impedance etc., through manipulating the contents
and the geometries of the active and passive components.
One of the important factors for the success of a composite
structure is the effectiveness of stress transfer from the passive
phase to the active phase. This stress transfer effectively
increases the response of the active component, so that one
can reduce the volume percentage of the ceramic phase to
lower the total system acoustic impedance and density without
affecting the piezoelectric properties. In order to understand
the stress transfer and its induced phenomena in the composite
structures, several theoretical models [4]-[6] were developed
in the past based on certain assumptions. Although these mod-
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els have provided some useful guidelines for the development
of composite structures, the numerical values calculated for
a real system using these models are usually much different
from the experimental values, especially at low frequencies
and in static conditions [7]. Motivated by this fact we have
studied the composite structures from a different perspective
and have obtained many interesting results just from some
basic considerations. These results will be reported in a series
of publications starting with this 2-2 structure selected for
mathematical simplicity.

The main limitation of the existing theoretical models
resides in the isostrain assumption that is illustrated in Fig.
1(a) for a 2-2 composite (note the Poisson effect is not shown
in Fig. 1 in order to avoid conceptual complications). Although
the isostrain assumption can greatly reduce the complexity
of the problem, it is obviously over simplified to describe
the situation of under a uniaxial stress or under an external
electric field. Strictly speaking, the isostrain condition can
be realized only when thick stiff plates are placed at the
electrod surfaces (surface capping). Without surface capping,
the composite properties will not only depend on the elastic
properties of the active (ceramic) and the passive (polymer)
phases, but also strongly depend on the aspect ratio of the
ceramic. As will be shown in this paper that the results
obtained from the isostrain assumption are only the upper
limits of the calculated physical quantities. In a real system,
the strain profile is inhomogeneous under a specified stress
or electric field because the two components, ceramic and
polymer, have different elastic stiffness. This situation may
be understood from the illustration in Fig. 1(b) that is for a
lamellar diphasic 2-2 composite under a uniaxial stress. A
relatively larger strain will be produced in the polymer phase
than in the ceramic phase under the same stress level. How-
ever, if the polymer and ceramic are tightly bonded together,
the displacements should be equal at the interface for both
components, which effectively forces the stiffer component to
take up some of the load on the softer component. In other
words, both components feel an additional shear stress acting
at the interface (although the applied stress has only normal
component), the direction of the shear stress is the same as
that of the applied stress in the harder component but opposite
as that in the softer component. Because of this stress transfer,
the response of the active piezoelectric ceramic to the uniaxial
stress is amplified in the expense of the reduced response of
the passive component.
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Fig. 1. Schematic plot of the deformation profiles of a 2-2 composite under
a uniaxial stress (dashed lines are the deformed profile). The dotted regions
represent the ceramic phase and the white regions represent the polymer phase.
The dashed lines illustrate the final static equilibrium profiles. (a) Isostrain
situation. (b) Deformation profile of a 2-2 composite under a uniaxial stress
or an electric field with nonslip ceramic—polymer interfaces. (c) Surface profile
for the situation of partial interface slip.

Because the actual stress transfer is through the interface,
the interfacial bonding is very important for the success of a
composite structure. The amplification of the response of the
active component to an applied stress, or the modification of
the strain profile under an applied electric field will be greatly
reduced if interfacial slip occurs. This situation is depicted in
Fig. 1(c), which will not be treated in this paper, instead, we
will focus on the situation shown in Fig. 1(b).

The main purpose of the present work is to derive the
general equilibrium conditions for a two phase composite, and
to define the amplification factor that can be used to charac-
terize the performance of a given composite structure. As a
starting structure we will look at the 2-2 lamellar polymer-
PZT composite, because it can be simplified as a quasione-
dimensional system. In a following publication, this theory
will be generalized to treat a 1-3 composite structure [8].

Although the 2-2 composite structure may have less prac-
tical value than that of the 1-3 composite, the 2-2 structure is
much easier to be treated mathematically, and we can use it
here to explain the underlying physical concepts. The solutions
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Fig. 2. A section of a 2-2 composite used in our analyses. The dotted and
white regions are ceramic and polymer phases respectively, where ! is the
thickness of the composite, and the system is periodic in the z-direction with
a period of (a + d). The dimension in the y-direction is assumed to be large
and the strain is assumed to be independent of y so that only a section of
width h is drawn here, which is used in our analyses. The coordinate system
is also shown in this figure.

obtained here have much broader physical meaning than just
for the 22 structure itself and can actually shed some light
on the basic understanding of 1-3 type composite structures
in general.

II. StaTIC EQUILIBRIUM CONDITIONS FOR A 2—2 COMPOSITE
UNDER UNIAXIAL STRESS

The cross section of a 2-2 lamellar diphasic polymer-
ceramic composite is shown in Fig. 2, where a and d are
the dimensions of the PZT and the polymer respectively in
the z-direction, and [ is the thickness of the composite in the
z-direction. Assuming the dimensions of the composite are
large in the - and y-directions, the system may be treated as
one-dimensional. For convenience, we cut a slab of width A
in the y-direction as shown in Fig. 2, which will be used for
the following analyses and throughout this paper.

Under a uniaxial stress T3, both the polymer and the
ceramic are either stretched or compressed depending on
the sign of T3. For simplicity, we do not consider in this
paper the inhomogeneity in the y-direction but only focus
on the inhomogeneous displacement profile in the z-direction.
The equilibrium conditions will be derived for the polymer
phase only; one may obtain the equilibrium conditions for the
ceramic phase by analogy. In the static case, the system has
enough time to adjust its shape in response to a given external
stress, so that we can assume the strain to be uniform in the
z-direction for any given z. From symmetry consideration,
the z = 0 plane (mirror plane) does not move at all in
the z-direction when the system is under a uniaxial stress
T or under an electric field E3. Using these two arguments
one can immediately write down the following ansatz for the
displacement u(z, z) in the z-direction:

u(z,z) = ZTZu(x, é)

where u(x,1/2)is the displacement profile at the top surface
of the composite.

Let us now derive the static equilibrium condition for the
polymer phase using (1). Taking a small element h dz dz as

O
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shown in Fig. 2, the shear force in the z-direction is
2z l
hdz p? up{(z,2)dz = T;L” Usz | T, 5 hdxdz (2)

where p? is the shear modulus of the polymer. Because the
displacement field is symmetric with respect to the z =
0 plane, we only need to consider the upper half of the
composite. From (2) one can calculate the total shear force
fs acting on the small slab & - dz - (1/2) in Fig. 2:

1/2
fs :/ 2iu"um(m,l)h dr dz
o 2
1 l
= —uP -
7 U (a:, 2)hdac. 3

This force reflects the coupling of neighboring slab elements
when the strain field is inhomogeneous. Another force on the
slab h-dx-(1/2) is the restoring force f, against the elongation
in the z-direction, which is

u(z,1/2)
l/2
where Y? is the Young’s modulus of the polymer. The third

force acting on this small slab is the external force f, resulting
from the uniaxial stress Tj:

fo=-Y? hdz “

fe=Tshdz. ©®)

In static equilibrium the total forces on this slab should be
zero, i.e,

f5+.f7‘+fr1=0~ (6)

Substituting (3)«5) into (6) we obtain the following second
order differential equation:

l 2

Zupum(:c,lﬂ)— TY"u(z,l/2)+T3 =0 )
which is the static equilibrium condition for the polymer phase
in terms of its surface displacement.

III. SOLUTIONS FOR DISPLACEMENT PROFILE AND EFFECTIVE
PHYSICAL PROPERTIES OF A 2-2 COMPOSITE

A. Surface Displacement of the Composite

Because the solution should be symmetric with respect to
the x = 0 plane according our choice of the coordinate system
(see Fig. 2), we only keep the even solution in solving (7). The
displacement profile of the polymer surface is

_ 2 [2yr /2 d d
u(z,l/2)—Ach(ﬂ/—up— z) tyTs -3 <e<; (8

w(z + nla + d], 2) = u(z, 2), n=1,2,3,---. (8b)

Here A is an integration constant to be determined, (8b)
represents the periodic nature in the z-direction with a period
of (a +d), and ch(z), sh(z), th(z) and cth(z) used here and
later in the text are the hyperbolic functions.
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Following exactly the same procedure described previously,
one can obtain the inhomogeneous displacement v(z,!/2) of
the ceramic surface in the z-direction:

d l
-t )] + 583373,

v(m,l/2)=Bch[% 2 (:c

$33Ca4 2 2

d d

5<z<gta (%9a)
v(+nfa+d],z) =v(z,2), n=123,--- (9)

where s33 is the compliance in z-direction and c44 is the shear
elastic constant for the ceramic, B is an integration constant
to be determined.

At the present time we only deal with the situation with no
interfacial slip, so that the first boundary condition is

u(d/2,1/2) = v(d/2,1/2). (10)

Another condition may be derived from the Newton’s third
law. We know that the inhomogeneous displacement profile
is produced by the additional shear force acting between the
polymer and the ceramic at the interface, and this additional
force can be calculated from the extradisplacement. By the
term extradisplacement we mean the difference of the dis-
placement profile of the composite from the displacement
of single pure phase under the same uniaxial stress. For
instance, the total additional force Fp experienced by the
polymer in the region of 0 < z < d/2, which is pro-
vided by the ceramic in the region of d/2 < z < (a +
d)/2 through the the tight binding at the interface, is given
by

42 v
sz‘/0 %{u(z,l/?)—g—gﬂ;]hdw

uPY'P d [2vyr»
B Sh(T u? )

where the term ((I/2)/Y?)T?is the displacement of a sigle
phase polymer under stress T3.

Similarly, the shear force experienced by the ceramic coun-
terpart is given by

=Ah

(1n

2
F°=Bh,/cish<ﬂ,/ ) 12)
2533 L'V s3zcqy
From Newton’s third law we have
F? = —F° 13)

which together with (10) can serve as the conditions to help
us determine the integration constants A and B:

A=
%(533 —1/Y?)- T

Ve sh($/5 et (3525 ) +en($/22)

14
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B =

—C44
uPY Ps33

—%(333 - l/Yp) ~T3

sh(%\/ﬁ)dh(% 2:;’,) + Ch(%\/ssfcu) .

(15)

B. Effective Piezoelectric Constants ds3 and 33

The surface displacements of both polymer and ceramic
(8) and (9) are inhomogeneous under the uniaxial stress T3,
which is caused by the stress transfer from the soft to the
hard component in the composite structure. The local stress,
which is now a combination of the applied normal stress and
the additional shear stress, is not uniform. Hence, the electric
displacement that is proportional to the local applied stress
on the ceramic also becomes inhomogeneous. Because the
electric displacement is equal to the surface charge density
for a parallel plates capacitor, the total charge produced by
the active piezoelectric ceramic in the range of d/2 < z <
(a + d)/2 can be obtained from the following integration:

(ata)/2 (ata)/2
Q= / D(2)h dz = / FIUCIULIP.
/2 /2 5331/2

ah

= ’Yd337T3 (16)

where ~ is the stress amplification factor:

L(1/YP — s33)
Vi (3 /2) + \/%Cth(%\/%“—h)n

which characterizes the amount of stress increase in the
ceramic phase. In order to maximize v, from (17) one should
choose a passive material with a small Young’s modulus but a
large shear modulus. The maximum + value can be obtained
in this way is

y=1+

Lim
uP/YP—oo

d
y=1+° (18)

which, corresponding to the total stress transfer, i.e., all the
loads are on the ceramic phase. Usually, the Young’s modulus
is larger than the shear modulus, hence it is limited to enhance
the « factor using a single phase material as the passive
component. However, one can manipulate the structures to
effectively increase the ratio of (u?)/(Y®). A situation close
to this limit is a structure of ceramic plates capped with two
very stiff electrodes at the surfaces and no filling in between
the ceramic plates. In practice, the composite structure also
needs to be mechanically strong so that the air kerf composites
(stiff metal electrodes placed on parallel ceramic rods without
filling matirial in between the rods) may not be suitable for
many applications despite its effectiveness of force transfer.
From (17) one can see that the amplification factor
may also be increased by manipulating the aspect ratio of
each individual component in the composite since all the
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Fig. 3. The amplification factor v versus ceramic content, where the hori-
zontal scale from O to 1 represents the volume percentage of the ceramic phase
from 0% to 100%. One can see that 4 may be enhanced by either reducing
ceramic content or reducing the ratio of (a + d)/I. However, the aspect ratio
will not make much difference if more than 80% of the composite is ceramic
by volume.

TABLE 1
ELASTIC, PIEZOELECTRIC AND DIELECTRIC PROPERTIES OF PZT [10]
AND SPURRS EPoxy [11] USeD IN OUR CALCULATIONS

PZT: s33 =0.017 (102 m2/N), cqq =20.7 (10° N/m?),
d33=223 (1012 C/N), € =730 ¢,.

YP =4.796 (109 N/m?), P =1.758 (10° N/m?),
€€=3.5 g,.

Note: £, is the dielectric constant of vacuum.

Spurrs Epoxy:

dimensions are involved in the expression. Generally speaking,
[ should be large and a should be small in order to get a larger
~. Fig. 3 shows the changes of the v values for a PZT-Epoxy
composite with respect to the volume percent of ceramic phase
at different (a + d)/l ratio. The elastic properties used in the
calculations are listed in Table I. One can see from Fig. 3 that
« increases with the decrease of the volume percent of ceramic
or the decrease in the ratio of (a + d)/l . We can derive the
limit of ~ for large ! from (17):

1

Lim _
v + vPY Psa3

l—o00

v = (19

where v and VP are the volume fractions of the ceramic
and the polymer phases respectively. This result is identical
as that obtained from the isostrain approximation, which
indicates that the calculated values for a composite structure
using isostrain approximation are the upper limits of the
corresponding physical quantities.

When [ is fixed, smaller a means smaller volume percentage
of ceramic phase. Although the « value may be increased by
reducing a , the total composite system might have smaller
effective piezoelectric ds3 constant due to the reducetion of the
active phase content. Considering the periodic nature in the -
direction and assuming the polymer to be nonpiezoelectric,
then for the 2-2 composite shown in Fig. 2 the charge
produced by the ceramic in the range of d/2 < z < (a+d)/2
will be distributed over the range of 0 < z < (a + d)/2 in
order to maintain the equal potential surfaces at the top and
bottom electrodes. Therefore, the effective piezoelectric dss3
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Fig. 4. The effective piezoelectric constant dzzof the 2-2 PZT-Epoxy
composite as a function of ceramic content at different (a 4 d)/! ratio, where
the scaling factor dss is the piezoelectric constant of the ceramic. One can
see that d33 is much smaller than d33 at low ceramic content.

constant for the composite is
— a
dss = ——

atd 20)

yd33 = vyds3
Fig. 4 are the plots of d—33/d33 values for different ratio of
(a + d)/l, one can see clearly that the aspect ratio of the
ceramic plays a crucial role in the total piezoelectric effect
of the composite system. When the ratio (a + d)/! is large, the
enhancement effect will be small and the ds3 is almost linearly
increasing with the volume percent of the active ceramic phase
except near the two ends of the curve. As the (a + d)/I ratio
decreases, the enhancement effect increases but the daz is
always less than d33 so long as the ceramic content is less
than 100%. The effect of the aspect ratio is more pronounced
at low ceramic content.

The effective piezoelectric g33 constant can be derived using
the condition of equal electric field inside both the polymer and
ceramic phases (result of equal potential electrode surfaces):

0 "das
9B = ey (d/a)er

where €° and P are the dielectric constants of the ceramic
and polymer respectively.

In common practice, the product ds3g33 is often used as the
figure of merit for a given composite structure, this value is
plotted in Fig. 5 against the volume content of PZT for several
values of (a + d) /I ratio. One can see from Fig. 5 that if use
d337a3 as the sole design criterion, the best composites are
those containing around 10% active ceramic phase by volume
for the composite discussed here. Note the values in Table I

(21)
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Fig. 5. The figure of merit, d33933, as a function of ceramic content at
different (a + d)/! ratio for a 2-2 composite made of pure PZT and Spurrs
Epoxy.

are for pure PZT and Spurrs Epoxy taken from [10] and [11]
respectively. If doped PZT’s are used, the absolute values in
Fig. 5 will be changed because the d33 and €° values will differ
greatly. However, the general trend shown in Fig. 5 is correct.

C. The Converse Piezoelectric Effect

When we apply an electric field instead of pressure to
a composite, similar inhomogeneous surface profile will be
obtained. The only difference is that the electric field only
have effect on the piezoelectric ceramic component but not on
the passive component. Therefore the solutions (8a)—(9b) are
simplified to

e (2T L) L,
u(z,l/2)=A cosh(l o z|, 2<.7:<2(22a)

w(z +nla+d,2) =u(z,2z), n=12,3,--- (22b)

and

2 d l
v(z,1/2) = B’ cosh [— 2 (ac s )} + 5 d3sE3,

l 833C44 2 2
g <z< g +a (23a)
v(z +nla+d],z) =v(z,2), n=12,3,--- (23b)

with A’ and B’given in (24) and (25), respectively (shown at
the bottom of the page).

For convenience, we like to define an average stain for
the composite, which formally still obeys the constitutive
relations. The arithmetic mean will suffice this requirement
so that we define

A= Lds3Es on
T (1B (1) + ()
7 A (25)

c. 2 d
V MPY4:833 Sh(% V 833044)Cth(T

2Y»P a 2
pP ) + Ch(l 333844>
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— 2
Ss = (a+d)(1/2)

d/2 (a+d)/2
/ u(z,1/2) dm+/ v(z,1/2) dz
0 /2

= ds3E3 (26)

where da3 is given by (19).

IV. CONCLUSION

A formal theory has been formulated for the ce-
ramic—polymer composite structures, which has successfully
described the inhomogeneous deformation of a 2-2 composite
under a uniaxial stress and/or under a static electric field.
The novel feature of the present theory is the elimination of
the isostrain approximation, which enables us to include the
aspect ratio of each components in the characterization of the
composites.

The mechanism of the stress transfer in composite structures
under a static elastic stress (electric field) can be explained
as follows. Due to the difference in their elastic stiffness
(piezoelectric properties), the polymer and ceramic phases
should deform different amounts under a given stress (electric
field). However, the nonslip interface forces the displacements
of the two phases to be the same at the interface so that
a shear stress is generated through this nonslip bonding.
This inhomogeneous shear stress in turn produces additional
nonuniform deformations in both the ceramic and the polymer
phases, producing enhancement to the response of the active
harder ceramic at the expense of the response of the passive
softer phase (the effect is the opposite for the converse
piezoelectric response).

An amplification factor v has been defined, which is the
ratio of the effective total stress on the ceramic and the
actually applied external stress. This amplification factor -y
characterizes the effectiveness of the stress transfer in a given
composite structure.

It is found that the effective piezoelectric constant of the
composite not only depends on the volume percentage of the
active component, but also strongly depends on the aspect ratio
and the configurations. Our theory predicts that the efficient
composite structures should have a small (a + d)/! ratio, and
the passive material should be selected to have small Young’s
modulus but large shear modulus. Surface capping effectively
increases the ratio of p#/Y? in the direction normal the the
capping surface, hence is a better structure according to the
theory. Because the results from isostain models provide only
the upper limits of those calculated physical quantities, they are
generally larger than the experimental values. In comparison,
the results obtained from the current theory agree very well
with the experimental results [9].
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