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We have measured the single-crystal elastic constants of KMnF; and their first pressure deriva-
tives from 200 to 430 K at a frequency of 20 MHz by means of the ultrasonic-pulse-superposition
method. Both sets of data show cusplike anomalies above the improper O,-D,, ferroelastic transi-
tion at 186 K that extend up to 350 K. Above 350 K the temperature dependence is linear, making
it possible to determine the bare harmonic and anharmonic constants by means of linear extrapola-
tion to 7=0. At room temperature the second pressure derivatives of the elastic constants were
also measured. Analysis of the data on the basis of a model with Coulomb and short-range central
force interactions indicates anomalously large fourth derivatives of the Mn-F and F-F pair poten-
tials. A calculation of the temperature dependence of the elastic Griineisen parameter is consistent
with models for the acoustic anomaly according to which coupling between strains and order-
parameter fluctuations is limited to frequencies less than the relaxation rate of the soft R,; mode.

I. INTRODUCTION

Starting with the discovery of ferroelectricity in
BaTiO; in 1945,! and stimulated by the introduction of
the soft-mode concept,?> ternary compounds of composi-
tion ABX,; occurring in the perovskite structure have
probably become the most thoroughly studied class of
materials.*> Interest originated both in their great im-
portance for electromechanical and electrooptic device
applications* and in the rich variety of physical phenome-
na associated with displacive phase transitions driven by
soft phonon modes occurring at different high-symmetry
points of the Brillouin zone.*®” Following the discovery
of high-T, superconductivity in perovskite-based layer-
type oxides®® interest in this class of materials has surged
recently.

The present work was motivated by the fact that even
the most detailed microscopic theory of mode softening
in perovskites available to date, that of Bruce and Cow-
ley,'° utilizes empirical input parameters that are very
uncertain. These authors extended the harmonic rigid
shell model of Stirling!! by including short-range anhar-
monic interactions and showed by means of many-body
perturbation theory that the two soft modes I';5 and R »;
observed in SrTiO; arise from anharmonic phonon-
phonon interactions.!® The temperature dependence of
the R ,s mode frequency is determined by the sum of A®
and A, representing the contributions to the real part of
the anharmonic self-energy from the third- and fourth-
order coupling parameters, respectively, which are
roughly of the same magnitude, but of opposite sign. The
“most recalcitrant problem” of determining the anhar-
monic coupling parameters was solved!® by fitting them
to the empirically determined coefficients of a Landau
free-energy expansion,'? thus assuming validity of mean-
field theory. The authors!® themselves are “careful not to
assign too much significance to (their) particular anhar-
monic forces.” It was indeed shown by Migoni et al.'?
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that the anomalously large value of the fourth-order
repulsive Ti-O interaction should be attributed to the in-
traionic anharmonicity that arises from the highly non-
linear polarizability of the oxygen ions. Furthermore,
when the third-order repulsive parameter for the Ti-O in-
teraction is determined from static values, either of
third-order elastic (TOE) constants, or of the hydrostatic
pressure coefficient of the dielectric constant (both ob-
tained by extrapolation of experimental data to absolute
zero so as to eliminate thermal and zero-point contribu-
tions) values considerably larger than those of Ref. 10 are
obtained,'* thus potentially offsetting the delicate balance
between A® and AY.

Clearly, for a more quantitative verification of the
theoretical models and for a comprehensive and con-
sistent account of anharmonic properties, more experi-
mental data, also for other compositions, are needed for
the determination of the anharmonic parameters.
Specifically, for the determination of the bare parameters
(without thermal and zero-point contributions), data on
the temperature dependence of anharmonic properties
are required.

The purpose of the present and of a subsequent paper
is to present results of accurate measurements of the TOE
constants of the fluoroperovskite KMnF; as a function of
temperature, plus some room-temperature data on
fourth-order elastic (FOE) constants.

The TOE (and FOE) constants were chosen because
(after subtracting the usually smaller Coulomb and the
harmonic short-range contributions) they give directly
the anharmonic repulsive parameters; and furthermore
(since the paraelectric perovskite structure is centrosym-
metric) because the deviations from the Cauchy relations
give the contributions from noncentral and many-body
interactions. The latter are rather large for perovskites as
far as data are available.!*~!” KMnF; was chosen in or-
der to provide empirical input data for a theoretical study
of the improper ferroelastic phase transitions at 91.5 and
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186 K driven by the softening of the M3 and R,; zone
boundary modes, respectively. Specifically, it is intended
to investigate the anharmonic forces and their effect on
the mode softening without the additional complications
in SrTiO; which arise from the soft I' |5 zone center mode
and from the unusual nonlinear electronic polarizability
of the O?~ ion.!> Furthermore, none of the fluoro-
perovskites for which the TOE constants are known'®!’
undergoes a phase transition, and comparison with the
anharmonic properties of KMgF; and KZnF; (Refs. 17
and 18) which do not undergo a phase transition was ex-
pected to shed light on the role of the Mn ion in KMnF,
in causing the mode softening.

In this paper we present and discuss experimental re-
sults on the pressure derivatives of the second-order elas-
tic constants obtained from ultrasonic velocity measure-
ments. Because of sample brittleness the individual TOE
constants could not be measured by application of uniaxi-
al stress. Therefore, the remaining data required for
determining the complete set of the six TOE constants
were measured separately by means of acoustic harmonic
generation and will be reported elsewhere.!’

The goal of the measurements under hydrostatic pres-
sure was to cover the temperature range above the transi-
tion, which is accompanied by an elastic anomaly,?°~%?
up to sufficiently high temperature where the tempera-
ture dependence is linear, so as to permit linear extrapo-
lation to absolute zero. In the approximation of first-
order anharmonic perturbation theory the values ob-
tained in this manner represent bare constants, pertaining
to the static crystal without thermal and zero-point con-
tributions,?>?* and also without the effect of the phase
transition. This procedure was possible for the first pres-
sure derivatives only, so that for the second pressure
derivatives we only report room-temperature values.

II. EXPERIMENTAL DETAILS

A. Sample

The single-crystal boule used in the present work was
grown at Cristal Tec., Grenoble, by the Czochralski tech-
nique. It is pink and optically transparent; by means of
standard stress-optical methods it was ascertained to be
stress free. The crystal density is 3.392; g/cm? at room
temperature. Two samples were cut from the boule.
Sample 1 is a cube with pairs of parallel faces of (110),
(110), and (001) orientation and normal distances of
1.0688, 1.0394, and 1.0630 cm, respectively. Sample 2
has only one pair of polished (111) faces 0.7559 cm apart;
the other two unpolished faces have the orientation (112)
and (110) with distances of 1.2 and 0.9 cm, respectively.
This sample was only used for second-harmonic genera-
tion measurements to be reported elsewhere.!® The orien-
tation was done by the Laue back-reflection method with
an accuracy of 0.3°. The faces were polished by using a
Logitec Polishing Machine. With 1-um diamond paste a
flatness better than 1A sodium light and parallelism of
the faces within 0.001° was achieved. All measurements
reported here are performed with sample 1.
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B. Hydrostatic pressure systems with temperature control

For the hydrostatic measurements, two systems were
used in order to extend the available temperature region.
One is a small cryogenic pressure vessel made of Be-Cu
alloy with a cylindrical internal space 1 in. long and a di-
ameter of 0.6 in.2> The sample is supported by two soft
copper foil springs which are attached to the vessel seal.
Pressure in the vessel is generated by an Aminco 46-
14021 two-stage compressor with helium gas as pressure
medium. The pressure is measured with a calibrated
Heise-Bourdon gauge with an accuracy of £0.7 bar. The
system is capable of generating pressure up to 2 kbar.
This pressure vessel can be screwed to a temperature-
controlled block of a cryostat. The temperature can be
controlled within 0.01 K by adjusting the electric current
delivered to the heater through a feedback circuit. For
measuring the temperature variation of the sound veloci-
ty without applying pressure, the sample is directly in
contact with the temperature-controlled block through a
sample holder. The temperature was recorded by a
Keithley 191 Digital Multimeter through a platinuum-
resistance thermometer with an accuracy of 0.01 K.

For measurements above room temperature another
pressure vessel was used.?® It is a Vasco steel cylinder of
37 in. length, 10 in. outside diameter and 2 in. internal di-
ameter. It is equipped with an internal furnace and an
outside water jacket. By using a Harwood two-stage
compressor a maximum pressure of 10 kbar can be
achieved. Temperature control to within 0.05 K is ac-
complished by adjusting the electric current delivered to
the furnace and maintaining constant temperature in the
water jacket by circulation water from a thermal bath.
Pressure was recorded by a Doric Trendicator 410 A
pressure gauge with an accuracy of =5 bar. For tempera-
ture variation above room temperature without applying
pressure, experiments are performed in a simple furnace
with a fine-adjustable transformer. The temperature is
controlled by adjusting the electric current and the
thermal radiation of the furnace. A Chromel-Alumel
thermocouple, which is in contact with the sample, gives
a temperature resolution of 0.01 K.

C. Ultrasonic interferometer

The pulse-superposition method?>?” was used to mea-

sure the ultrasonic velocities at a frequency of 20 MHz as
a function of pressure and temperature. By using an au-
tomatic electronic peak finder? a precision of better then
10~° was achieved. X- and AC-cut quartz transducers
with diameters of 0.18 in. were used to generate longitu-
dinal and transverse acoustic waves. The bond material
was Non-aq stopcock grease (Fisher Scientific Company).

III. EXPERIMENTAL RESULTS FOR KMnF;

A. Temperature dependence of second-order elastic constants

By using the small simple furnace and the low-
temperature system, the transit time of the ultrasonic
wave in the sample was measured for four different
modes as function of temperature. Figure 1 shows the re-
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FIG. 1. Elastic constants for directly measured modes vs
temperature.

sults of pv2 for these modes, where v is the sound velocity
at temperature T and p the density at the same tempera-
ture. pv? is equal to the second-order elastic constants as
shown in Fig. 1 for each individual mode.

In order to determine the slope of the elastic constants
versus temperature well above the elastic anomaly due to
the phase transition, more data points were taken in the
high-temperature region. The bond correction is neglect-
ed in our calculation since it was found to be
insignificant. Data taken in the two systems (below and
above room temperature) join smoothly near room tem-
perature although they were taken at different times and
with different bonds. In order to avoid breaking the crys-
tal by passing through the phase transition, the minimum
temperature was kept about 4 K above T, (=186 K).
The two longitudinal modes in [001] and [110], i.e., ¢},
and (cj;+ci;)/2+c4 were measured from 190 to 430
K, but the two transverse modes in these directions, i.e.,
c44 and (c}; —ci,)/2 were only measured from 190 to
350 K because for this crystal the Non-aq stopcock
grease cannot support transverse modes above 360 K.
Above 350 K the attenuation of the transverse modes in-
creases strongly and the data are not reliable.

In the high-temperature region (T >>T,) the elastic
constants decrease linearly with temperature for the four
directly measured modes. On the other hand, in the
low-temperature region near T'; the curves are bent down
when approaching the phase transition from above. At
an intermediate temperature pv? reaches a maximum. In
[001] the maxima for the longitudinal and transverse
modes are at 275 and 285 K, and in [110] at 270 K for the
longitudinal mode and 307 K for the transverse mode
with polarization along [110], respectively. Figure 1
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TABLE 1. Bare values cj, and y},°, plus high-temperature
limit of temperature coefficients 4,, and B,, of adiabatic
second-order elastic constants and partial contractions of iso-

thermal TOE constants, respectively.

11 12 44
g, (10" N/m?) 12.55 4.53 2.71
A,, (10 N/m?> K) —330 —0.71 —0.04
7120 (10" N/m?) —165.6 —71.2 —272
B,, (10* N/m? K) 3.56 10.73 —0.097

shows that in the high-temperature limit the transverse
modes have smaller temperature coefficients than the lon-
gitudinal modes. Although the transverse modes were
measured over a relatively smaller temperature range,
their linear temperature dependence is well documented.
In the high-temperature limit the three independent
second-order elastic constants cj;,c},, and ¢4, were fitted
to straight lines; the constants defined by the equation

=09+ 4,,T 3.1)

are listed in Table 1. cfw are the bare constants that are
needed as input for lattice dynamic models.

The bulk modulus calculated from the four directly
measured modes shows only very little temperature varia-
tion between 190 and 350 K and passes through a broad
maximum of 6.4934 % 10'° N/m? at 260 K.

B. First pressure derivatives
of elastic constants versus temperature

From 200 to 280 K the measurements under hydrostat-
ic pressure were performed in the small Be-Cu pressure
vessel. The data were taken at constant temperature each
time after the pressure was reduced from its initial max-
imum value. It takes 30—40 min for the system to reach
thermal equilibrium after each decrement of pressure.

For measurements at and above room temperature, the
experiments were performed in the larger vessel with an
internal furnace. The main difficulty in the high-
temperature measurements is caused by the bond materi-
al. Several materials were tried; most of them transmit
transverse modes only for temperatures up to 325 K, but
longitudinal modes up to 473 K. The best bond material
found is a phthalic anhydride (CgH,O;) glycerin solution,
which transmits both transverse and longitudinal modes
up to 413 K under pressure. Data were taken during de-
creasing pressure and temperature.

If L, denotes the length of the unstressed sample at
temperature 7, and 7 the round-trip time of the ultrason-
ic wave, then the natural velocity is given by W=2L, /7.
The isothermal first-pressure derivatives cq=(dc /dp),_,
of the adiabatic effective elastic constants can be calculat-
ed from the relation?®

co=poW5/3BT+(pW?),_, . (3.2)

Here pg is the density of the crystal at temperature T
without external pressure. Corrections were made for the
changes of length and volume at temperatures different
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from 298 K.

Figures 2(a) and 2(b) show the isothermal pressure
derivatives of the second-order adiabatic elastic constants
calculated according to Eq. (3.2) from the measured data
of (p W:")I’J —o- The derivatives also show similar behavior
to that of the second-order elastic constants, viz., an
anomalous drop near the transition temperature T, and
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FIG. 2. Pressure derivatives of elastic constants vs tempera-
ture, (a) moduli ci,, cj;, and cy4, (b) shear modulus
¢, =(c}, —ci;)/2 and bulk modulus B°.
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linear temperature dependence far above T,. Among
these pressure derivatives (dc], /8p); has the strongest
temperature dependence; its value changes monotonically
from —10.8 at 200 K to 7.23 at 398 K; (9ci,/dp)r de-
creases with temperature from 9.8 at 200 K to 3.5 at 398
K. (9c4y/0p)r is weakly temperature dependent and
changes sign at about 220 K. In order to illustrate how
the slope changes with temperature, one set of the origi-
nal data of pW? versus pressure is given in Fig. 3 for the
longitudinal mode in [001]. Clearly, the slope changes
sign with increasing temperature. It is apparent from
Figs. 2(a), 2(b), and 3 that in the absence of the phase
transition these pressure derivatives would depend linear-
ly on temperature. It should also be mentioned that the
longitudinal modes were measured up to 500 K, and that
the temperature dependence remains strictly linear.

Four different modes were measured in the hydrostatic
experiments. Since for cubic symmetry only three of the
modes are independent, a standard least-squares error
method®® was used for the data analysis, and only data
points of equal temperature were retained in the final cal-
culations. The error of these pressure derivatives is
within 0.3%.

While the pressure derivatives depend on both second-
and third-order elastic constants, it is possible to separate
these contributions. In this way one obtains the partial
contractions I'{3};,,, of the TOE constants which are for
O, symmetry given in Voigt notation by?!

Yiv=cin+2c, (3.3a)
Y =ci3+2e, (3.3b)
Vil =Craa+2C166 - (3.3c)
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FIG. 4. Partial contractions of isothermal third-order elastic
constants vs temperature.

They can be calculated from the pressure derivatives ac-
cording to

y¥=—{c5, +3BT[14+(3c$, /3p)7]} » (3.4a)
y3=—{c$, +3B™[(dc$, /0p)r—11} , (3.4b)
v =—{cu+3BT[1+(3cy /3p) 1]} - (3.4¢)

Since both the isothermal and adiabatic quantities enter
these equations they give the “mixed” contractions. Con-
version to purely isothermal contractions®' gives the data
as shown in Fig. 4 versus temperature. The magnitudes
of the partial contractions of the TOE constants are over
ten times larger than the second-order elastic constants,
so that the pressure derivatives are determined by the
TOE constants. Figure 4 shows that well above the phase
transition in the high-temperature limit the partial con-
tractions of the TOE constants also depend linearly on
temperature. Therefore, in order to determine the bare
partial contractions of TOE constants their temperature
dependence was also extrapolated linearly from the high-
temperature region. The constants defined in analogy to
Eq. (3.1) are also given in Table I.

38 ELASTIC CONSTANTS OF KMnF; AS FUNCTIONS OF . .. 7951

< 200 ] , . 0 S b
2 KMn ':3 KMn F3
Q 100 3.80 /// .
L <Y +-10 TOI0]
I . i PCIIO]
2 L & )

_ (3) s
8 IOO \\ *—:’.\"~¥.|L __20 2
w ‘\ ey —a--—4 5
2 200 ecze - 2 1
w o~ —

N
o —-30 =
(£ (3) « -
f -
2 el i
£ 100/ ' -
= /
8 7 ]
§ - Ry ¢o) U B N TR SR IR S SR B
£ 70 05 10
< -200 L l ! PRESSURE (G Pa)
200 300 400

FIG. 5. Pressure dependence of pW? for [110]}/[110] trans-
verse mode at 298 K. The solid line represents a quadratic
least-squares fit.

C. Room-temperature measurements

At room temperature the measurements were carried
to higher pressure (810 kbar) than at the other tempera-
tures (2-7 kbar). Under such high pressure some curva-
ture can be detected, and a quadratic fit is used in the
analysis of the room-temperature data instead of the
linear fit at other temperatures. Figure 5 shows as a typi-
cal set of experimental data the [110]/[110] transverse
mode. These data can be well fitted to a parabola (solid
line).

The second pressure derivatives of the elastic constants
can be calculated from the equation®®

¢§ =poWAL{ +2poW Ly +(poW )y .

The quantities L, and L, take into account the
pressure-induced dimensional change of the sample and
for cubic symmetry can be expressed in terms of the bulk
modulus B and its first pressure derivative.?

In Table II the room-temperature (298 K) values of the
isothermal and adiabatic second-order elastic constants
are listed. These values were obtained by extrapolating
the pressure data to zero pressure by means of a quadra-

(3.5)

TABLE II. Adiabatic and isothermal second-order elastic constants (in 10'° N /m?) at 298 K.

cn 12 Ca4 Cs B
Adiabatic 11.480 3.956 2.6989 3.7603 6.463
+0.004 +0.004 +0.0001 +0.0003 +0.004
Isothermal 11.281 3.761 2.6989 3.7603 6.268
+0.004 +0.004 +0.0001 +0.0003 +0.004
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TABLE III. Adiabatic, isothermal, and mixed first pressure derivatives of the second-order elastic

constants at 298 K.

ac“/ap acn/ap acu/ap acg/ap aB/ap
(3cS/9p)s 5.929 3.370 0.280 1.279 4.220
+0.014 +0.014 +0.005 +0.014 +0.014
(3cS/dp)r 5.929 3.399 0.281 1.265 4.242
+0.014 +0.014 +0.005 +0.014 +0.014
(3cT/3p)r 5.822 3.292 0.281 1.265 4.136
+0.014 +0.014 +0.005 +0.014 +0.014

tic least-squares fit. The extrapolated values agree with
those from measurements of the temperature dependence
at zero pressure within 0.05%. The discrepancy is attri-
buted to the fact that different electronic equipment was
used for the two sets of measurements.

By using Eqgs. (3.2) and (3.5) the first and second pres-
sure derivatives of cj,, ¢i,, and c,, were determined; the
former are given in Table III together with the purely
isothermal and adiabatic quantities (dc*/dp), and
(3cT/dp)r. The specific heat ¢, used for the conversion
between isothermal and adiabatic quantities was calculat-
ed according to the Debye approximation by using the
elastic Debye temperature. Table IV lists the second
pressure derivatives of the second-order elastic constants
at room temperature. From these quantities one can cal-
culate the partial contractions I' i-}‘k),,,,m, of the fourth-
order elastic constants given by*?

iV =cun 4 +2c+2¢113 (3.6a)
Y18 =2cyy15+2¢11+5¢1123 (3.6b)
V48 =C11a4 +2¢ 1166 +4€ 1244 +2€ 1266 - (3.6¢)

In Table V these mixed partial contractions are listed to-
gether with the isothermal partial contractions of the
TOE constants. The latter are about 330, 840, and 30
times larger than the respective second-order elastic con-
stants. Since for cesium halides the partial contractions
of the fourth-order elastic constants are only about 100
times larger than the second-order elastic constants,>
this indicates unusually large (small) fourth-order anhar-
monicity for ¢, (c4), respectively. Large derivations
from the Cauchy relations y{3'=y{} and y{%=7
occur, especially for the fourth-order elastic constants,
indicating unusually strong many-body contributions to
the latter.

D. Experimental errors

All experimental errors shown in Tables II-IV are
standard errors from simultaneous least-squares fits of

three independent elastic constants and their (first and
second) pressure derivatives to the four different acoustic
modes measured as functions of pressure. They are most-
ly due to sample inhomogeneities and misalignment of
the crystal surfaces. Additional systematic errors arise
from measurement of sample dimensions, density, travel
time, and pressure. These errors are estimated as 0.1%
1%, and 2% for the elastic constants, and for their first
and second pressure derivatives, respectively.

IV. DISCUSSION

A. Second-order elastic constants

The three second-order elastic constants of KMnF;
have been measured before with an ultrasonic pulse
method at 30 MHz from 200 K to room temperature by
Alexandrov, Reshchikova, and Beznosikov?® (ARB), and
¢y has been measured by a continuous wave resonance
technique at 5 MHz from 120 to 370 K by Melcher and
Plovnick?! (MP). Since the data show very little scatter
they are shown as smooth curves in Fig. 6 together with
our present results.

The most conspicuous feature is the cusplike anomaly
around the transition temperature T,. This anomaly has
also been studied for other perovskites 4BX;, especially
in the critical regime close to and above T (see, e.g.,
Refs. 34-36 and references therein). It has been attribut-
ed to fluctuations of the order parameter (the rotation an-
gles of the BX¢ octahedra) and should for T > T, decay
as (T —T,)~® (Refs. 36-39). Above the critical regime &
is not a universal critical exponent and not well known
theoretically. In the context of the present paper the
acoustic anomaly is of interest mostly because it is needed
to determine its width and to identify the temperature
above which the effect of the fluctuations has subsided so
as to permit determination of the bare elastic constants
by linear extrapolation to T=0. Whereas in SrTiO; the
anomaly is quite narrow [about 10 K for 10'-10%® Hz
(Refs. 34 and 38)], according to Fig. 6 it is much wider

TABLE IV. Second pressure derivatives of second-order elastic constants (in 107! m?/N) at 298 K.

d%,, /9p* d%c,, /3p? d%cyy /9p? d%cs /3p* 3B /9p?
(3%cS/3p?)r —17.3 7.0 —0.38 —12.2 —1.1
+2.7 +2.8 +0.1 +0.4 +2.7
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TABLE V. Isothermal and mixed partial contractions of
third- and fourth-order elastic constants, respectively (in
10'° N/m?) at 298 K.

72 11 12 44
Yo —140.3+3 —47.6%3 —26.8+0.1
Vi — 3900+ 1000 33001000 84+40

for KMnF;, almost 150 K. This is a consequence of the
weak dispersion of the soft zone boundary modes between
the R and M points*® which restricts the fluctuations to
the LIOO} planes and drives the transition weakly first or-
der.

Although the elastic anomaly observed by MP and by
us is in qualitative agreement their anomaly is narrower
than ours, and their linear high-temperature regime starts
at a lower temperature (about 300 K) than ours (about
350 K). Furthermore, the data of MP are larger than
ours (about 2%) in the high-temperature regime. These
discrepancies could possibly arise from sample differences
and/or from the different experimental techniques and
frequencies used.

The aspect most important for the purposes of the
present paper is the existence of a linear high-temperature
regime for c, in the data of MP, and the close agreement
of their slope with that of our data.

The data by ARB for ¢,; do not show a maximum, but
an increase in slope around 275 K. However, all three

ELASTIC MODULUS (10 N/M?*)

Coa—>
. —26
5H 2 —2.4
i ~C, 1
4 3 —
1 i 1 1 ! |
100 200 300 400

TEMPERATURE (K)

FIG. 6. Comparison of elastic-constant data by different au-
thors with results from present work. [1, Melcher and Plovnick
(Ref. 21); 2, Alexandrov et al. (Ref. 20); 3, present work].
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curves of ARB are (except for the two data points for ¢,
at 275 and 295 K) congruent with the curves based on
our data, but are shifted to higher temperature by about
10 K; furthermore, ARB’s data for ¢, are 1% larger
than ours. In this context is should be noted that the
transition temperature of our sample was 186 K, in
agreement with virtually all of the large number of papers
on KMnF;, but that ARB report a transition tempera-
ture of 198 K for their sample.”® However, by shifting
their curves by about 10 K to lower temperature they can
be brought into coincidence with ours (except for the two
data points for c¢,; at 275 and 295 K, and the aforemen-
tioned shift in c44). Thus, if one assumes that the temper-
ature scale of ARB below room temperature is subject to
a systematic error of about 10 K, the discrepancy be-
tween their and our data, and especially between the op-
posite signs of the temperature coefficient for ¢, is
resolved: then c;; reaches its maximum value at room
temperature, and the upper limit of the fluctuation re-
gime (about 350 K) was not reached by ARB. Since both
their and our measurements were made with ultrasonic
pulse methods at comparable frequencies we suggest, sub-
ject to confirmation by extension of the measurement on
ARB’s sample to higher temperature, that the crystals
used in these two experiments were of comparable quality
and composition, and that above 200 K the acoustic
anomaly is an intrinsic effect.

Finally, we note that in the low-temperature phase
(T < 186 K) there is a pronounced difference between the
data for c¢;; of MP and ARB. This can most likely be at-
tributed to different domain configurations in the two
samples used, resulting from differences in sample size
and geometry, as well as defect content, and to some ex-
tent to the fact that these data were taken at different fre-
quencies and by different methods.

B. Griineisen parameters
The thermal Griineisen parameter

y®"=BB"/pc, 4.1)

(B is the volume thermal expansion coefficient, B is the

isothermal bulk modulus, p is the density, c, is the

specific heat) is in the quasiharmonic approximation

given by the mode average*?
r=23c"; / St 4.2)

i i
Here c¢® denotes the Einstein specific heat and ¥, the mi-
croscopic Griineisen parameter (mode gamma)

¥i=—(V /a;Xw, /¥ )y 43

of the ith vibrational mode, respectively, and V the
volume.

Although the mode average (4.2) depends on both the
anisotropy and the dispersion of the y;, for many materi-
als surprisingly good agreement with y'! is obtained by
evaluating (4.2) in the long wave length acoustic limit (an-
isotropic elastic continuum approximation®’), i.e., in
these cases the average (4.2) is determined primarily by
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the anisotropy. Discrepancies between y™ and v (evalu-
ated in this manner), when they occur, give indirect infor-
mation on the dispersion of y;. Application of this pro-
cedure to KMnF; is of interest because it allows one to
verify the existence of a cutoff frequency 1/7 for the fluc-
tuation contribution to the elastic constants and their
pressure derivatives. 7=2T"/w% is the relaxation
time’” 3% of the soft R,s mode (with frequency wz and
linewidth ') and marks the transition from the hydro-
dynamic (fluctuation) regime w7t <1 to the ballistic re-
gime o7> 1.

Comparison of Figs. 1 and 2 shows that the shape and
width of the acoustic anomalies for the elastic constants
and their pressure derivatives are rather similar; this im-
plies that their frequency dependence and, specifically,
the cutoff frequencies should also be similar.

In the anisotropic elastic continuum approximation the
mode y’s are determined by the second-order elastic con-
stants and their first pressure derivatives. For cubic sym-
metry it is®

y;=(BT/2¢;)(dc; /3p)r—1 . (4.4)
Here c¢; =pV? is the effective elastic constant pertaining
to a particular mode for a given direction.

In Figures 7(a) and 7(b) the three elastic mode y’s (4.4)
are plotted versus direction at room temperature and at
200 K, respectively. While the anisotropy of the elastic
constants is small and independent of temperature, the
mode y’s depend strongly on direction and temperature.
At room temperature ¥, has a minimum near [111], 7,
and y; have maxima in [110] and near [111], respectively.
At 200 K all extrema occurring at room temperature are
reversed. At room temperature all three mode y’s are
positive, but become negative at 200 K for almost all
directions.

Figures 7(a) and 7(b) were calculated from the ultrason-
ically measured elastic data which include the fluctuation
contribution. On the other hand, the corresponding
curves for the high-frequency regime w > 1/7, obtained
by subtracting the fluctuation contribution from the elas-
tic data in the manner described above, are qualitatively
and semiquantitatively very similar to the room tempera-
ture curves [Fig. 7(a)] and depend only weakly on temper-
ature.

The thermal Griineisen parameter was calculated from
experimental thermal-expansion data®® and by using the
Debye approximation for the specific heat with
®,=470.1 K (396.8 K) for T=298 K (200 K), respec-
tively, calculated from the measured temperature-
dependent elastic constants. Also shown in Fig. 8 are the
elastic y’s ¥$ and y$, calculated according to (4.2) in the
anisotropic continuum approximation for the high- and
low-frequency limits wr>>1 (H) and ot <<1 (L), respec-
tively, both evaluated in the high- and low-temperature
limits (T > ®, denoted by o; and T =0, denoted by 0,
respectively).

It is apparent that 7§ , and y§ , decrease strongly and
become negative at lower temperature, reflecting the
effect of fluctuations on (dc,,/dp), but do not differ
much from each other. On the other hand yi},m and
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¥$.0, because of the absence of the fluctuation contribu-
tion, decrease only slightly with decreasing temperature,
and also differ only a little from each other. y'™ increases
weakly with decreasing temperature. The weak-
temperature variation of y$ corresponds to that of y'
however, a discrepancy by an almost constant factor of
about 2 is apparent and may be attributed to the neglect
of dispersion and of optic-mode contributions in the an-
isotropic elastic continuum model.

The temperature dependence of y$ disagrees qualita-
tively with that of ¥™. This can be understood in terms
of the volume fraction f in phase space in which the con-
tribution from the fluctuation-dominated acoustic mode
v’s should be significant. In the Debye approximation
one obtains f=(wp7) %, where w, = Debye frequency.
From the linewidth and frequency of the soft R,5; mode
determined for KMnF; at 295 K by inelastic neutron
scattering®® one obtains f=2.25X10"* Since 7 in-
creases with decreasing temperature, f decreases even
further as the transition temperature is approached.

C. Short-range parameters

In the rigid shell model the second- and higher-order
elastic constants are for centrosymmetric cubic
perovskite materials ABX; additively composed of
Coulomb and (repulsive) short-range contributions,
where the former depend only on the effective ionic
charges Z 4, Zg, and Zy, but not on the electronic polar-
izabilities of the ions.**!'* Taking for the charges in
KMnF; (and the other fluoroperovskites to be considered
here) the free-ion values®® +1, + 2, and —1, respective-
ly, and assuming short-range central-force pair-potential
interactions @g(rg) between nearest-neighbor ions (with
B=1, 2, 3 denoting A-B, B-X, and X-X interactions, re-
spectively) we can therefore calculate the first- through
fourth-order derivatives of the pair potential from the
equilibrium condition (p =0) and from our experimental
values of the second-order elastic constants and of the
partial contractions of the TOE and FOE constants.
Since the latter could only be measured at room tempera-
ture we restrict ourselves here to an approximate analysis
based on room-temperature input data.

In the Appendix the equilibrium condition, the
second-order elastic constants (based on expressions
given by Cowley*), and the partial contractions ¥} and
‘y;“’;’ are given for the rigid shell model of Stirling'! which
includes the above three types of short-range interac-
tions. The latter are expressed in terms of the dimension-
less derivatives of the pair potentials defined as fol-
lows* 14 [B=1,2,3]:

(e2/2a*)Bg=(1/rg)(3gg/drg) , (4.5a)
(e2/2a*) Ap=(dpp/dr}) , (4.5b)
(e2/2a®)Cp=rp(dpy/dr}) , (4.5¢)
(e2/2a*)Dg=r}(d*pp/r}) . (4.5d)

Here a denotes the lattice constant, e the electronic
charge, and r =ry=a/V2, r,=a/2 the nearest-
neighbor distances.
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It is apparent from Egs. (A2), (A3), and (A6) that the
K-F and F-F interactions enter the equations only in the
additive form (B, +B;), (A;+ A3), etc., and therefore
cannot be determined separately. Thus these equations
represent seven equations for the eight unknown quanti-
ties (Bl+B2), Bz; (A1+A2), Az; (C1+C3), Cz;
(D,+D;), D,. In order to get one additional condition
the K-F and F-F interactions were calculated from the
Huggins-Mayer form @g(rg)=>bgexp(—rg/p) (B=1, 3),
with bg and p determined empirically from alkali
halides.*® Having determined (B, + B;) in this manner,
B, was then determined from the equilibrium condition,
and the remaining six (combinations of) repulsive param-
eters were determined from the experimental elastic data
cis e v v v, ¥4, In addition, the second- and
higher-order coupling parameters (A4, + 43), (C;+C;),
and (D;+D;) were also calculated from the Huggins-
Mayer potential. All results are listed in Table VI. For
comparison the corresponding coupling parameters up to
third order are also listed for KMgF; and KZnF;, which
do not undergo a structural transition, and for which
only the first pressure derivatives of the elastic constants
are available.!s 8

The data in Table VI show the following. (i) For the
K-F plus F-F interaction the experimental values agree
quite well with the calculated harmonic coefficients
A+ A;, but are about two times and twenty times
larger for the anharmonic coefficients C,+C; and
D, +Dj, respectively. This suggests that the (smaller)
first derivatives B, and B; are adequate for the deter-
mination of B, from the equilibrium condition. (ii) The
first and second derivatives (B, and 4,) of the (Mg, Zn,
Mn)-F interactions are about ten times larger than the
combined K-F and F-F interactions, but for the third
derivatives this ratio drops to about 2 to 5, and the fourth
derivative (D,) even shows the opposite sign and is nu-
merically four times larger than D, +D;. (iii) The details
of the calculation (not included in Table VI) show that to
all orders the calculated K-F interaction is about twice as
large as the F-F interaction. (iv) All first and second
derivatives are very similar for the three fluoro-
perovskites compared in Table VI, but for KMnF;,C, is
only half as large as for the other two compounds.

The large derivations from the Cauchy relations
YW=y for n=3 and, especially for n =4 (Table V)
have already been noted above, but by themselves they do
not provide any clues as to whether noncentral contribu-
tions are more pronounced for ¢, or ¢4, (and their pres-
sure derivatives). In order to decide this question we
have repeated the entire determination of the short-range
parameters with c,,, 74}, and y{} as experimental input
(instead of ¢,,, ¥, and ¥{3)). Surprisingly, there are few
drastic changes in the repulsive parameters, except that
for the K-F plus F-F interaction the agreement between
calculated and experimental values was less satisfactory,
and that a 50-% smaller value was obtained for D,. In
addition, since the experimental error of (3%, /dp?) is
smaller than for the other second pressure derivatives
used as input (see Table IV), we have repeated the param-
eter determination with ¢, and its pressure derivatives as
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TABLE VI. Short range coupling parameters for three fluoroperovskites derived from room-
temperature elastic data. Data in parentheses are calculated from Huggins-Mayer model (Ref. 46).

KMgF; KZnF, KMnF,
Lattice Constant (nm) 0.3989 0.4055 0.4190
Ref. Elastic data 18 47,16 Present work
B,+ B, (—1.65) (—1.48) (—1.19)
B, —9.92 —10.58 —11.73
A+ A, 9.48 15.13 10.46

(13.74) (12.57) (11.71)
A, 94.62 85.01 89.79
C,+C, — 149 —204 —190

(—115) (—107) (—92)
C, —1701 —760 —348
D,+D, 16 700

(803)

D, —59900

input. Again, the results are quite similar, the largest
difference to emerge being a reduction of D, from
—59900 to —44 200.

In summary, the most noteworthy result is the relative-
ly small third, and the unusually large fourth derivative
of the Mn-F interaction (C, and D,, respectively). Most
likely this may be attributed to the partly filled 3d shell of
Mn, whereas Mg?* and Zn®?* have, of course, closed-
shell configurations. On the other hand, it is not possible
to attribute the R,5 mode instability in ABF; perovskites
to some particular electronic configuration of the B ion,
because RbMnF; does not show R,s-mode softening,*®
whereas RbCaF; does.*’

D. Relation to structural transition

It has been suggested”° that the R ,s-mode phase tran-
sition in ABX; perovskites occurs when the B ions are
sufficiently “large” so as to reduce the A-X interaction
and allow the BX, octahedra to rotate more easily. On
the basis of this picture one would expect the B-X in-
teraction to increase in the sequence Mg-F, Zn-F, either
absolutely, or relative to the K-F interaction. However,
according to Table VI this is not the case for the coupling
parameters of first, second, and third order. On the con-
trary, C, for KMnF; is only half the value for KMgF,
and KZnF;. Only the fourth-order coupling parameters
are anomalously large, both for the K-F plus F-F, and for
the Mn-F interactions. (Unfortunately, for KMgF; and
KZnF; no data are available for comparison.) It seems
implausible to attribute the anomalously large value of
D, (and D+ D;) to an ionic ratio effect or, equivalently,
to the range of Hartree-Fock-type wave functions, be-
cause in this case the lower-order coupling parameters
would be affected too. The situation for KMnF; is some-
what analogous to that in SrTiO; where it is also the
fourth order, but not the third-order coupling parameters
for the Ti-O interaction that are anomalously large.!
This has been attributed to the nonlinear electronic po-
larizability of the O?~ ions;!* however, this explanation
cannot be expected to be valid for the F ion in KMnF;,
because, unlike the O~ ion, it does not require a Watson

sphere for stabilization.’! An alternative explanation

would be a charge-transfer mechanism between the Mn
and F ions, that could at the same time also account for
large many-body effects.’>>* Conceivably, this feature
could also be a manifestation of strongly anharmonic F-F
interactions associated with a double-well potential origi-
nally proposed* for RbCaFj; to account for strong anhar-
monicity observed in the Debye-Waller factor and more
recently found to be consistent with experimental evi-
dencgsfor precursor order close to the transition tempera-
ture.

V. SUMMARY AND CONCLUSIONS

The single-crystal elastic constants and their first pres-
sure derivatives have been measured for KMnF; by
means of the ultrasonic pulse superposition method at 20
MHz from 200 to 430 K. At room temperature the
second pressure derivatives have also been measured.
The salient features of the results and their analysis are as
follows.

(i) A downward cusplike anomaly is observed at the
improper ferroelastic transition temperature T;=186 K,
both for the elastic constants and their pressure deriva-
tives, which extends upward to about 350 K.

(i) Above 350 K the elastic constants and their pres-
sure derivatives exhibit the usual linear temperature
dependence which in the absence of phase transitions is
characteristic of the high-temperature regime (T >0®p)
and which permits linear extrapolation to T=0 for the
determination of the bare elastic quantities (without
thermal and zero-point motion).

(iii) Analysis of the room-temperature data on the basis
of a rigid shell model with nearest-neighbor central-force
short-range interactions between K-F, Mn-F, and F-F
ions shows that the harmonic contribution from the
short-range Mn-F interaction dominates, but that the
anharmonic contributions are comparable to the K-F
plus F-F interactions, and that especially the fourth-order
anharmonic contributions from all three interactions are
anomalously large. Furthermore, the anharmonic in-
teractions contain large many-body contributions and are
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highly anisotropic.

(iv) The elastic anomaly has been attributed previously
to coupling between strain and fluctuations of the order
parameter of the 186 K phase transition.’”%® We find
that the small temperature variation of the thermal
Griineisen parameter agrees with that of the elastic
Griineisen parameter without the fluctuation contribu-
tion, calculated in the anisotropic continuum approxima-
tion by linear extrapolation of our elastic data from the
high-temperature regime, but that the elastic Griineisen
parameter with the fluctuation contribution included ex-
hibits the wrong temperature dependence. This is con-
sistent with previous theoretical models*”*® which indi-
cate that the fluctuation-controlled regime is limited to
acoustic frequencies less than the relaxation rate of the
soft R,5 mode.

In a subsequent paper we plan to supplement our
present results by measurements of acoustic second-
harmonic generation in the high-temperature linear re-
gime.' This will permit the determination of the com-
plete set of the bare TOE constants for the static crystal
to be used as input for a more consistent theory of anhar-
monic properties and mode softening in KMnF;.
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APPENDIX

In the following we give the equations that were used
for the determination of the repulsive parameters in Sec.
IV B, viz., the equilibrium condition, expressions for the
second-order elastic constants and for the partial contrac-
tions of the TOE and FOE constants.

For the cubic perovskite structure pertaining to the
composition ABX; with Coulomb interactions between
the ions with charges Z =1, Zz;=2, and Z, =—1, and
with short-range central-force interactions @g(rg), (B=1,
2, 3) between A-X, B-X, and X-X nearest neighbors, re-
spectively, the lattice energy per formula unit is given by

d=—ae?/a+12¢,(r;)+6@,(ry)+12¢4(r;) . (Al)
Here a=12.377 468 denotes the Madelung constant for
the above choice of charges,’® a denote the lattice con-
stant, and r{, r,, and r; denotes the three types of
nearest-neighbor distances as given in Sec. IV C. Writing
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the derivatives of the pair potentials @glrg) in the dimen-
sionless form as in Egs. (4.5a)-(4.5d), the equilibrium
condition [p = —(1/3a*)(3¢ /da ) =0] becomes**

4a+12(B,+B;)+3B,=0 . (A2)

Writing Cowley’s expressions for the second-order elastic
constants* in the form (uv=11, 12, 44)

C#V=(ez/a4){0(2)+p<2>/4}

v (A3)

the partial contractions of TOE and FOE constants ob-
tained via proper differentiation®""3? can be written in the
analog form (with n =3 and 4, respectively)

v =(e*/a") o) +pin 74} . (A4)
Here

o3 =—16.495904 , (A5a)

0'3=2.059218 , (A5b)

o =—52, (A5c)

ol =35q2). (A5d)

p:":,’ represent the short-range repulsive contributions; the

six independent linear combinations occurring in (A3)
and (A4) are

pV=200—B,+4,, (A6a)
pl=—(B,+B)+(4,+4;), (A6b)
PiY=2p13+3B,—34,+C; , (Abe)
pY=3(B,+B3)—3(A,+ A3)+(C;+C3),  (A6d)
P\ =209 —15B,+154,—6C,+D, , (Abe)
pY=—15(B,+B3)+15(4,+ 4;)
—6(C;+C3)+D,+D; . (A6D)

In Egs. (A4)-(A6) a redundant factor of 2 has been delet-
ed from Cowley’s expressions,“ and the more accurate
values of Naimon®® are given instead. Furthermore, the
equilibrium condition has been used in reducing the
repulsive contributions to the form given in Egs. (A6);
this results in the Cauchy relations for n =2,3,4:

oW=0, (A7a)
=il . (ATb)

The Coulomb coefficients satisfy the relations (given in
part by Naimon®®)

o420 =—a, (ABa)
o¥+203=5a, (A8b)
o +20)=—-35a . (A8c)
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