Homework 8, Due October 26th

1. Prove the local uniqueness theorem:

Let $F, g \in C^{3}$ and consider the problem

$$
\begin{equation*}
F(D u, u, x)=0, u(x)=g(x) \text { on } \Gamma . \tag{1}
\end{equation*}
$$

Let $x_{o} \in \Gamma$ be a noncharacteristic point. Then there exists a constant δ depending on F, g and and $D u\left(x_{o}\right)$, such that if u_{1} and u_{2} are two (local) solutions of (1) near x_{o} with the (key) property $\left|D u_{1}\left(x_{o}\right)-D u_{2}\left(x_{o}\right)\right|<\delta$, then $u_{1} \equiv u_{2}$.
2. Consider the inviscid Burgers' equation

$$
u_{t}+u u_{x}=0, \quad u(x, 0)=\phi(x), \quad x \in \mathbb{R} .
$$

(a) Show that the function $v(x, t):=u_{x}(x, t)$ satisfies the equation

$$
v_{t}+u v_{x}=-v^{2} .
$$

(b) Define the curve $x(t)$ in the (x, t)-plane by $v(x(t), t)=\min _{x \in \mathbf{R}} v(x, t)$. Argue that $u_{x x}(x(t), t)=0, \quad$ for all t.
(c) Show that $V(t):=v(x(t), t)$ satisfies the ODE $\dot{V}(t)=-V(t)^{2}$.
(d) Use this to argue that: if there is a point x such that $\phi^{\prime}(x)<0$, then the gradient u_{x} of the solution of Burgers' equation reaches $-\infty$ in finite time.
3. Let $u \in C^{1}$ be a solution of a (linear) equation $a_{1}(x) u_{1}+a_{2}(x) u_{2}=-u$ on $B(0,1)$. Prove that $u \equiv 0$, if $a_{1} x_{1}+a_{2} x_{2}>0$ on $\partial B(0,1)$.
Hint: show that $\max u \leq 0$ and $\min u \geq 0$.
4. Problem 4 from Evans. pp. 163.
5. Solve

$$
u=x u_{x}+y u_{y}+\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right), u(x, 0)=\left(1-x^{2}\right) / 2 .
$$

Extra problem (for your practice only, do not submit solutions).
6. Liouville equation

Consider the Hamilton's system

$$
\dot{x}=D_{p} H, \dot{p}=-D_{x} H
$$

Every solution of this system describes a trajectory of moving particle, where $x(t)$ is the position and $p(t)$ is the velocity. Imagine that we do not know the precise initial conditions of the particle at $t=0$, but we only know its probability density ρ_{0} :
$\int_{A} \rho_{0}(p, x) d x d p=\operatorname{Prob}\left\{\right.$ Particle is initially at x_{0} with velocity $\left.p_{0},\left(x_{0}, p_{0}\right) \in A\right\}$.
a) Let ρ_{t} be the probability density at time t. Find the equation for ρ_{t}. This is the Liouville equation.
b) Work-out the special case

$$
H=\frac{p^{2}}{2 m}+U(x)
$$

where U is smooth.
Note: use the fact that the Hamiltonian is constant along characteristics.
Also, the answer in the linear case is given at the end of p. 3 of Evans.

