Homework 7, Due October 17th

1-3. Problems 1-3 from Evans. pp.162-163.

4. (a) Show that the initial value problem for $u(t, x)$ on $\mathbb{R}_{+} \times \mathbb{R}$,

$$
\begin{align*}
u_{t}+\left(\frac{u^{3}}{3}\right)_{x} & =0 \quad \text { for } t>0 \tag{1}\\
u(0, x) & =x, \tag{2}
\end{align*}
$$

has no local (smooth) solution.
(b) Solve the same equation with data

$$
u(0, x)=\left\{\begin{array}{cl}
-1 & \text { for } x \leq-1 \\
x & \text { for }-1 \leq x \leq 1 \\
1 & \text { for } x \geq 1
\end{array}\right.
$$

Hint for part a) observe that (global) solutions do not exist for some $t_{0}>0$, if you can find two (distinct) characteristics that cross at t_{0} (or earlier).
5. In the $x-t$ plane, find all C^{2} solutions of $x u_{t}-t u_{x}=0$ with initial conditions $u(x, 1)=x^{2}$.
Note: For exactly the same problem in class I gave you an example of a (second) solution which was continuous, but it was not C^{2}. Thus it could not be classical. This problem asks you to construct classical solutions.

