Homework 5, Due October 3rd

1. Problem 10 from Evans. p. 87.
2. Find traveling wave solutions of the heat equation

$$
u_{t}=k \Delta u
$$

in \mathbb{R}^{n}. That is determine all (smooth) solutions in the form

$$
u(x, t)=f(b \cdot x-c t),|b|=1
$$

3. Prove that there is at most one classical solution of the following equations considered on a bounded domain $\Omega \in \mathbb{R}^{n}$.
a) Advection-diffusion equation:

$$
u_{t}+v \cdot \nabla u-\Delta u=f(x, t) \text { on } \Omega \times[0, T], u=g \text { at } t=0, u=0, \text { in } \partial \Omega,
$$

with a smooth incompressible flow $v \nabla \cdot v=0$.
b) Heat equation with Neumann boundary conditions:

$$
u_{t}-\Delta u=f(x, t) \text { on } \Omega \times[0, T], u=g \text { at } t=0, \partial u / \partial \nu=0 \text { in } \partial \Omega .
$$

4. Prove (weak) maximum principle for the advection-diffusion equation $u_{t}+v \cdot \nabla u-\Delta u=0$ on $\Omega \times[0, T], u=g$ at $t=0, u=0$, in $\partial \Omega$.
That is show that

$$
\max _{\Omega \times[0, T]}|u| \leq \max _{\bar{\Omega}}|g| .
$$

Hint: Use energy methods. Observe that

$$
d_{t} \int_{\Omega}|u|^{p} d x \leq 0
$$

for any $p>0$ (it suffices to assume that p is an even integer) and show that for (bounded) functions

$$
\|u\|_{L^{\infty}}=\lim _{p \rightarrow \infty}\|u\|_{L^{p}}
$$

5. Problem 15 from Evans. p. 88.

Extra problems (for your practice only, do not submit solutions).
6. Prove Poincare inequality: suppose $u \in C^{1}(\bar{\Omega})$ and $u=0$ on $\partial \Omega$, then

$$
\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq C\|u\|_{L^{2}(\Omega)}^{2}
$$

with a universal constant, that depends on the domain Ω only.
7. Prove exponential decay of energy: for the solution of

$$
u_{t}-\Delta u=0 \text { on } \Omega \times[0, T], u=g \text { at } t=0, u=0, \text { in } \partial \Omega,
$$

we have

$$
\|u(\cdot, t)\|_{L^{2}(\Omega)} \leq e^{-C t}\|g\|_{L^{2}(\Omega)} .
$$

Hint: Use Poincare inequality.
8. Prove exponential decay of energy for the solution of an advectiondiffusion equation

$$
u_{t}+v \cdot \nabla u-\Delta u=0 \text { on } \Omega \times[0, T], u=g \text { at } t=0, u=0, \text { in } \partial \Omega,
$$

with a smooth incompressible flow $v \nabla \cdot v=0$. Namely, show that

$$
\|u(\cdot, t)\|_{L^{2}(\Omega)} \leq e^{-C t}\|g\|_{L^{2}(\Omega)}
$$

where the constant C is independent of v

