Homework 4, Due September 26th

1. Prove that any non-negative solution $u \in C^2(\Omega)$ of the stationary reaction-diffusion equation

$$-\Delta u = f(u)$$
 in $\Omega, \frac{\partial u}{\partial n} = 0$, on $\partial \Omega$,

with KPP (Kolmogorov-Petrovsky-Piskunov) reaction rate

$$f(u) = u^p(1-u), \ p > 0,$$

is $u \equiv 0$ or $u \equiv 1$. Here Ω is an open bounded domain in \mathbb{R}^n with smooth boundary.

2. a) Show that there is no classical (i.e. $C^1([-1, 1]))$ solutions of the one-dimensional eikonal equation

$$(u')^2 = 1$$
, on $[-1, 1]$, $u(-1) = u(1) = 0$.

b) Consider a two-well potential:

$$I[w] = \int_{-1}^{1} (1 - (w'(x))^2)^2 dx, \ u(-1) = u(1) = 0.$$

Prove that I[w] has no minimizers on $C^1([-1,1])$.

c) Construct several minimizers of I[w] C([-1, 1]), thus showing their non-uniqueness.

d) Construct explicitly a family of solutions $u_n \in C([-1, 1])$ of the (weak) eikonal equation

 $(u'_n)^2 = 1$, almost everywhere on [-1, 1], $u_n(-1) = u_n(1) = 0$,

such that $u_n \to u$ uniformly (i.e $||u_n - u||_{C[-1,1]}$), and

$$(u')^2 \neq 1$$
 on $[-1, 1]$.

- 3. Problem 11 (Chapter 2) on p.87 of Evans's book.
- 4. Problem 13 (Chapter 2) on p.87 of Evans's book.
- 5. Problem 14 (Chapter 2) on p.88 of Evans's book.

Extra problems (for your practice only, do not submit solutions).

6. Suppose $u \in C^2(\Omega)$ is the solution of

$$-\Delta u = f(x), \text{ in } \Omega, u = 0, \text{ on } \partial\Omega,$$

with $f \ge 0$, $\int_{\Omega} f dx > 0$. Prove that for any $x \in \Omega$, u(x) > 0. Here Ω is an open bounded domain in \mathbb{R}^n with smooth boundary.

Note: This illustrates "non-locality" of the Laplacian: f(x) may be zero almost everywhere, but it is positive on a set of small measure. This is enough to conclude that u > 0 everywhere inside the domain.

7. Viscous regularization. For small $\epsilon > 0$ consider a regularization of the eikonal equation

$$-\epsilon u'' + (u')^2 = 1$$
, on $[-1, 1]$, $u(-1) = u(1) = 0$.

a) Show that this equation has a unique solution.

b) Show that there is a limit $\epsilon \to 0$ these solutions.

c) Show that the limiting function solves the (weak) eikonal equation

$$(u'_n)^2 = 1$$
, almost everywhere on $[-1, 1]$, $u_n(-1) = u_n(1) = 0$.

8. Suppose $\Phi(x-y)$ is the fundamental solution of the Poisson equation on an open bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary. For $x \in \Omega$ let $\phi^x(y)$ be the corrector

$$\Delta \phi^x = 0$$
, in Ω , $\phi^x = \Phi(x - y)$ on $\partial \Omega$.

a) Prove that

$$\phi^x(y)dy \le \Phi(x-y)(y).$$

b) Prove that problem 5 p.86 from Evans is true not only for a ball, but for any bounded domain.

9. Hopf's Lemma. Suppose $u \in C^2(B(0,1)) \cap C^1(\overline{B}(0,1))$ is the solution of the Laplace equation on a unit ball:

$$\Delta u = 0$$
, in $B(0, 1)$, $u = f$, on $\partial B(0, 1)$.

Let $x_0 \in \partial B(0,1)$, be the point where u achieves its maximum. Prove that the normal derivative at this point is *strictly* positive:

$$\frac{\partial u}{\partial \nu} > 0.$$

Note: $\frac{\partial u}{\partial \nu} \ge 0$ is obvious. 10. Suppose a sequence u_n of harmonic functions converges uniformly on compact sets to u. Prove that u is harmonic.

Note: it means, in particular that the space of harmonic functions on a bounded set Ω is a closed subset in $C^0(\Omega)$, i.e it is a Banach space.