
Homework 1, Due September 5th

1. Problem 1 (Chapter 2) on p.85 of Evans’s book.
2. Problem 4 (Chapter 1) on p.12-13 of Evans’s book.
3. Prove the one-dimensional Harnack’s inequality: Suppose u ∈ C2([−R,R])

satisfies u′′ = 0, and u(x) ≥ 0. Then we have

(

1 −
|x|

R

)

u(0) ≤ u(x) ≤

(

1 +
|x|

R

)

u(0).

4. Suppose a positive differentiable function E(t) satisfies an inequality:

E ′(t) ≤ φ(t)E(t) log (1 + E(t)) + ψ(t),

where positive functions φ and ψ are uniformly bounded: for all t ≥ 0

0 < φ(t) ≤ C, 0 < ψ(t) ≤ C. (1)

Prove that E(t) does not blow up in finite time.
Hint: A Gronwall’s inequality (see p.625 of book) says that if

E ′(t) ≤ φ(t)E(t) + ψ(t),

with the same assumptions on E(t), φ and ψ, then

E(t) ≤ CeCt.

for some constant C1. In our problem we can obtain at most a ”double-
exponential” growth:

E(t) ≤ CeCeCt

.

1As it is customary in PDE theory we will use C as a generic constant independent of
any parameters of the problem. In particular this C is different from the C in equation (1)
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5. Prove that the transport equation

{

ut + b · Du = 0, on R
n × (0,∞),

u(x, t = 0) = g(x) ∈ C1(Rn),

is well-posed for classical solutions.
Hint: We clearly know that the solution exists - we gave an explicit formula
in class. Continuous dependence on initial conditions will also follow from
the same formula and linearity of the equation (you still need to prove it,
though). So, the only subtle point here is to prove uniqueness of the solution.
Again, by linearity, we only need to investigate the case

{

ut + b · Du = 0, on R
n × (0,∞),

u(x, t = 0) = 0.

and show that u(x, t) ≡ 0 is the only classical2 solution. Make a change of
variables : (x, t) → (y, s), where s = t, y = x− bt, derive

{

us = 0, on R
n × (0,∞),

u(y, s = 0) = 0,

and prove uniqueness appealing to the ODE theory.

2Here it means that we can assume that u is continuously differentiable in x and t.
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