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Classical Game 

Theory

Dynamic Game 

Theory

Combinatorial 

Game Theory

Other Topics in 

Game Theory

GAME 

THEORY

Games with finite or 
infinite strategy space, 
but no time.

Games with probability 
(either induced by the 
player or the game).

Games with coalitions 
or negotiations.

Examples:
Poker, Strategic 
Military Decision 
Making, Negotiations.

Games with time. 

Games with motion or 
a dynamic component.

Examples:
Optimal play in a dog 
fight. Chasing your 
brother across a room.

Games with no 
chance.

Generally two player 
strategic games 
played on boards. 

Moves change the 
structure of a game 
board. 

Examples:
Chess, Checkers, Go, 
Nim.

Experimental / 
Behavioral Game 
Theory

Voting Theory

Examples: 
Determining why 
altruism is present in 
human society.

Determining if there's 
a fair voting system.

Evolutionary 

Game Theory

Modeling population
dynamics under 
competition

Modeling the evolution 
of strategies in a 
population.

Examples:
The evolution of 
behaviors in a group of
animals.

Equilibrium of human 
behavior in social 
networks.

No time, doesn't contain differential equations Notion of time, may contain differential equations



Games Against the House
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The games we often see on television fall into this category. TV Game Shows

(that do not pit players against each other in knowledge tests) often require a

single player (who is, in a sense, playing against The House) to make a

decision that will affect only his life.
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The Monty Hall Problem

Other games against the house:

• Blackjack

• The Price is Right



Assumptions of Multi-Player Games
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1. There are a finite set of Players: P = {P1, . . . , PN}
2. Each player has a knowledge of the rules of the game (the rules under which the

game state evolves) and the rules are fixed.

3. At any time t ∈ R+ during game play, the player has a finite set of moves or

choices to make. These choices will affect the evolution of the game. The set of all

available moves will be denoted S .

4. The game ends after some finite number of moves.

5. At the end of the game, each player receives a reward or pays a penalty (negative

reward).

In addition to these assumptions, some games may incorporate two other components:

1. At certain points, there may be chance moves which advance the game in a

non-deterministic way. This only occurs in games of chance. (This occurs, e.g., in

poker when the cards are dealt.)

2. In some games the players will know the entire history of moves that have been

made at all times. (This occurs, e.g., in Tic-Tac-Toe and Chess, but not e.g., in

Poker.)



Game Trees (1)
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Play(s) in a game can often be described by a tree:
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Game Trees (2)
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Strategies proscribe actions for players at each vertex of the tree.
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Game Trees (3)
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Information sets allow us to limit the information that players know

before they make a decision.

J
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N
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Allied Information Set

Japanese Information Set



Game Trees (4)
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Games of chance can also be modeled in this way:

Red (0.5) Black (0.5)

Raise

Fold

Raise

Fold

(1,-1)(1,-1) (-1,1)(2,-2)

P0

P1

P2

P1

Call Fold
Call Fold

P2

(1,-1)(-2,2)



Game Trees (5)
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Definition 1 (Game Tree). Let T = (V,E) be a finite directed tree, let

F ⊆ V be the terminal vertices and let D = V \ F be the intermediate

(or decision) vertices. Let P = {P0, P1, . . . , Pn} be a set of players

including P0 the chance player. Let S be a set of moves for the players.

Let ν : D → P be a player vertex assignment function and µ : E → S
be a move assignment function. Let

P = {pv : ν(v) = P0 and pv is the moves of Player 0}

Let π : F → R
n be a payoff function. Let I ⊆ 2D be the set of

information sets.

A game tree is a tuple G = (T,P,S, ν, µ, π, I,P). In this form, the

game defined by the game tree G is said to be in extensive form.



Two Theorems
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Theorem 2. Let G = (T,P,S, ν, µ, π, I,P). Let σ1, . . . , σN be a collection

of strategies for Players 1 through n. Then these strategies determine a

discrete probability space (Ω,F , P ) where Ω is a set of paths leading from the

root of the tree to a subset of the terminal nodes and if ω ∈ Ω, then P (ω) is

the product of the probabilities of the chance moves defined by the path ω.

All this theorem says is the combinations of strategies from players defines a

set of paths through the game tree from the root to the leafs and each path can

be assigned a probability. In the event that there are no probabilistic moves, the

path is unique.

Theorem 3. Let G = (T,P,S, ν, µ, π, I) be a game with no chance. Let

σ1, . . . , σN be set of strategies for Players 1 through n. Then these strategies

determine a unique path through the game tree.



Some Definitions
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Definition 4 (Strategy Space). Let Σi be the set of all strategies for Player i in a game

tree G. Then the entire strategy space is Σ = Σ1 × Σ2 × · · · × Σn.

Definition 5 (Strategy Payoff Function). Let G be a game tree with no chance moves.

The strategy payoff function is a mapping π : Σ → R
n. If σ1, . . . , σN are strategies

for Players 1 through n, then π(σ1, . . . , σN ) is the vector of payoffs assigned to the

terminal node of the path determined by the strategies σ1, . . . , σN in game tree G.

For each i = 1, . . . , N πi(σ1, . . . , σN ) is the payoff to Player i in πi(σ1, . . . , σN ).

Consider the Battle of the Bismark Sea game (derived from events in World War II).

Then there are four distinct strategies in Σ with the following payoffs:

π (Sail North, Search North) = (−2, 2)

π (Sail South, Search North) = (−2, 2)

π (Sail North, Search South) = (−1, 1)

π (Sail South, Search South) = (−3, 3)



Expected Payoff
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Definition 6 (Expected Strategy Payoff Function). Let G be a game tree with

chance moves. The expected strategy payoff function is a mapping

π : Σ → R
n defined as follows: If σ1, . . . , σN are strategies for Players 1

through n, then let (Ω,F , P ) be the probability space over the paths

constructed by these strategies as given in Theorem 2. Let Πi be a random

variable that maps ω ∈ Ω to the payoff for Player i at the terminal node in path

ω. Let:

πi(σ1, . . . , σN ) = E(Πi)

Then:

π(σ1, . . . , σN ) = 〈π1(σ1, . . . , σN ), . . . , πN (σ1, . . . , σN )〉

As before, πi(σ1, . . . , σN ) is the expected payoff to Player i in π(σ1, . . . , σN ).

Further analysis of these general game trees leads to sub-game perfection.



Equilibrium
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Definition 7 (Equilibrium). A strategy (σ∗

1 , . . . , σ
∗

N ) ∈ Σ is an equilibrium if for all i.

πi(σ
∗

1 , . . . , σ
∗

i , . . . , σ
∗

N ) ≥ πi(σ
∗

1 , . . . , σi, . . . , σ
∗

N )

where σi ∈ Σi.

Consider the Battle of the Bismark Sea. We can show that (Sail North, Search North)
is an equilibrium strategy. Recall that:

π (Sail North, Search North) = (−2, 2)

Now, suppose that the Japanese deviate from this strategy and decide to sail south.

Then the new payoff is:

π (Sail South, Search North) = (−2, 2)

Thus:

π1 (Sail North, Search North) ≥ π1 (Sail South, Search North)



Equilibrium (2)
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Now suppose that the Allies deviate from the strategy and decide to

search south. Then the new payoff is:

π (Sail North, Search South) = (−1, 1)

Thus:

π2 (Sail North, Search North) > π2 (Sail North, Search South)

Theorem 8. Let G = (T,P,S, ν, µ, π, I,P) be a game tree with

complete information. Then there is an equilibrium strategy

(σ∗

1
, . . . , σ∗

N ) ∈ Σ.

Corollary 9. This strategy when restricted to any sub-tree is still an

equilibrium.

Such a strategy is called sub-game perfect.



Zermelo’s Theorem
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Corollary 10 (Zermelo’s Theorem). Let G = (T,P,S, ν, µ, π) be a

two-player game with complete information and no chance. Assume that

the payoff is such that:

1. The only payoffs are +1 (win), −1 (lose).

2. Player 1 wins +1 if and only if Player 2 wins −1.

3. Player 2 wins +1 if and only if Player 1 wins −1.

Finally, assume that the players alternate turns. Then one of the two

players must have a strategy to obtain +1 always.

A variation on this theorem has applications to Chess (Checkers, Go

etc.). It tells us that for combinatorial games like Chess, either there is a

strategy so that white always wins, or a strategy so that black always

wins or ties or a strategy so that black always wins or ties.

Further analysis in this direction leads to Combinatorial Game Theory.



Strategic Form Games
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Definition 11 (Normal Form). Let P be a set of players,

Σ = Σ1 × Σ2 × · · · × ΣN be a strategy space and let π : Σ → R
N be

a strategy payoff function. Then the triple: G = (P,Σ, π) is a game in

normal form.

Definition 12 (Strategic Form–2 Player Games). G = (P,Σ, π) be a

normal form game with P = {P1, P2} and Σ = Σ1 × Σ2. If the

strategies in Σi (i = 1, 2) are ordered so that Σi = {σi
1
, . . . , σi

ni
}

(i = 1, 2). Then for each player there is a matrix Ai ∈ R
n1×n2 so that

element (r, c) of Ai is given by πi(σ
1

r , σ
2

c ). Then the tuple

G = (P,Σ,A1,A2) is a two-player game in strategic form.



Strategic Example
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Consider the two-player game defined in the Battle of the Bismark Sea. If we assume

that the strategies for the players are:

Σ1 = {Sail North,Sail South}

Σ2 = {Search North,Search South}

Then the payoff matrices for the two players are:

A1 =

[

−2 −1
−2 −3

]

A2 =

[

2 1
2 3

]

Here, the rows represent the different strategies of Player 1 and the columns represent

the strategies of Player 2.

For historic reasons we usually write A = A1 and B = A2.



Types of Games
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Definition 13 (Symmetric Game). Let G = (P,Σ,A,B). If A = BT

then G is called a symmetric game.

Definition 14 (Constant / General Sum Game). Let G = (P,Σ, π) be a

game in normal form. If there is a constant C ∈ R so that for all tuples

(σ1, . . . , σN ) ∈ Σ we have:

N
∑

i=1

πi(σ1, . . . , σN ) = C (1)

then G is called a constant sum game. If C = 0, then G is called a zero

sum game. Any game that is not constant sum is called general sum.

The Battle of the Bismark Sea is a zero sum game.



Chicken
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Player 1

Swerve Don’t Swerve

Swerve 0 -1

Don’t Swerve 1 -10

Player 2

Swerve Don’t Swerve

Swerve 0 1

Don’t Swerve -1 -10

From this we can see the matrices are:

A1 =

[

0 −1
1 −10

]

A2 =

[

0 1
−1 −10

]

Note that the Game of Chicken is not a zero-sum game, i.e. it is a general sum game.



Relation Back to Game Trees
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Proposition 15. Let G = (P,Σ,A,B) be a two-player game in strategic form with

Σ1 = {σ1
1 , . . . , σ

1
m} and Σ2 = {σ2

1 , . . . , σ
2
n}. If Player P1 chooses strategy σ1

r and

Player P2 chooses strategy σ2
c , then:

π1(σ
1
r , σ

2
c ) = eTr Aec (2)

π2(σ
1
r , σ

2
c ) = eTr Bec (3)

Proposition 16 (Equilibrium). Let G = (P,Σ,A,B) be a two-player game in

strategic form with Σ = Σ1 × Σ2. The expressions

eTi Aej ≥ eTkAej ∀k 6= i (4)

and

eTi Bej ≥ eTi Bel ∀l 6= j (5)

hold if and only if (σ1
i , σ

2
j ) ∈ Σ1 × Σ2 is an equilibrium strategy.

It is not the case than an equilibrium in pure strategies exists for all games.



Mixed Strategies
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Definition 17 (Mixed Strategy Vector). Let G = (P,Σ, π) be a game in normal form

with P = {P1, . . . , PN}. Let Σi = {σi
1, . . . , σ

i
ni
}. To any mixed strategy for Player

Pi we may associate a vector xi = [xi
1, . . . , x

i
ni
]T provided that it satisfies the

properties:

1. xi
j ≥ 0 for j = 1, . . . , ni

2.
∑ni

j=1
xi
j = 1

These two properties ensure we are defining a mathematically correct probability

distribution over the strategies set Σi.

Definition 18 (Player Mixed Strategy Space). Let G = (P,Σ, π) be a game in normal

form with P = {P1, . . . , PN}. Let Σi = {σi
1, . . . , σ

i
ni
}. Then the set:

∆ni
=

{

[x1, . . . , xni
]T ∈ R

n×1 :

ni
∑

i=1

xj = 1;xj ≥ 0, j = 1, . . . , ni

}

is the mixed strategy space in ni dimensions for Player Pi.



Strategy Space
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There is a pleasant geometry to the space ∆n (sometimes called a simplex).

In three dimensions, for example, the space is the face of a tetrahedron. (See

Figure 1.)

x1 x2

x3

1

1 1

Face of a tetrahedron∆3 =

Figure 1: In three dimensional space ∆3 is the face of a tetrahedron. In

four dimensional space, it would be a tetrahedron, which would itself be

the face of a four dimensional object.



Mixed Strategies (3)

23 / 34

Definition 19 (Mixed Strategy Payoff Function). Let G = (P,Σ, π) be a

game in normal form with P = {P1, . . . , PN}. Let Σi = {σi
1
, . . . , σi

ni
}.

The expected payoff can be written in terms of a tuple of mixed strategy

vectors (x1, . . . ,xN ):

ui(x
1, . . . ,xN ) =

n1
∑

i1=1

n2
∑

i2=1

· · ·

nN
∑

iN=1

πi(σ
1

i1
, . . . , σn

iN
)x1

i1
x2

i2
· · ·xN

iN
(6)

Here x
j
i is the ith element of vector xj . The function ui : ∆ → R

defined in Equation 6 is the mixed strategy payoff function for Player Pi.

(Note: This notation is adapted from Weibull’s book on Evolutionary

Game Theory.)



Mixed Strategies (2)
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Definition 20 (Nash Equilibrium). Let G = (P,Σ, π) be a game in normal form with

P = {P1, . . . , PN}. Let Σi = {σi
1, . . . , σ

i
ni
}. A Nash equilibrium is a tuple of mixed

strategies (x1∗, . . . ,xN∗

) ∈ ∆ so that for all i = 1, . . . , N :

ui(x
1∗, . . . ,xi∗, . . . ,xN ∗

) ≥ ui(x
1∗, . . . ,xi, . . . ,xN∗

) (7)

for all xi ∈ ∆ni

Proposition 21. Let G = (P,Σ,A,B) be a two-player matrix game. Let

Σ = Σ1 × Σ2 where Σ1 = {σ1
1 , . . . , σ

1
m} and Σ2 = {σ2

1 , . . . , σ
2
n}. Let x ∈ ∆m

and y ∈ ∆n be mixed strategies for Players 1 and 2 respectively. Then:

u1(x,y) = xTAy (8)

u2(x,y) = xTBy (9)

If you’re Player 1 and you don’t know B exactly, but know it can be drawn from a

certain probability distribution, this leads to Bayesian games.



Minimax Theorem

25 / 34

Theorem 22. Let G = (P,Σ,A) be a zero-sum game with A ∈ R
m×n. Then the

following are equivalent:

1. There is a Nash equilibrium (x∗,y∗) for G
2. The following equation holds:

v1 = max
x

min
y

xTAy = min
y

max
x

xTAy = v2 (10)

3. There exists a real number v and x∗ ∈ ∆m and y∗ ∈ ∆n so that:

(a)
∑

i Aijx
∗

i ≥ v for j = 1, . . . , n and

(b)
∑

j Aijy
∗

j ≤ v for i = 1, . . . ,m

Theorem 23 (Minimax Theorem). Let G = (P,Σ,A) be a zero-sum game with

A ∈ R
m×n. Then there is a Nash equilibrium (x∗,y∗).



Nash’s Theorem
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Definition 24 (Player Best Response). Let G = (P,Σ, π) be an N player game in

normal form with Σi = {σi
1, . . . , σ

i
ni
} and let ∆ be the mixed strategy space for this

game. If y ∈ ∆ is a mixed strategy for all players, then the best reply for Player Pi is

the set:

Bi(y) =
{

xi ∈ ∆ni
: ui(x

i,y−i) ≥ ui(z
i,y−i) ∀zi ∈ ∆ni

}

(11)

Recall y−i = (y1, . . . ,yi−1,yi+1, . . . ,yN ).

Theorem 25. Let G = (P,Σ, π) be an N player game in normal form with

Σi = {σi
1, . . . , σ

i
ni
} and let ∆ be the mixed strategy space for this game. The

strategy x∗ ∈ ∆ is a Nash equilibrium for G if and only if x∗ ∈ B(x∗).

Theorem 26 (Existence of Nash Equilibria). Let G = (P,Σ, π) be an N player game

in normal form. Then G has at least one Nash equilibrium.

The original proof was based on Kakutani’s Fixed Point Theorem, which is not

satisfying.



Finding Nash Equilibria
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Nash modified and extended his proof to use Brouwer’s Fixed Point

Theorem by defining:

J i
k(x) = max

{

0, ui(ek,x
−i)− ui(x

i,x−i)
}

(12)

We can now define:

xi
j

′

=
xi
j + J i

j(x)

1 +
∑ni

k=1
J i
k(x)

(13)

Using this equation, we can construct a mapping T : ∆ → ∆ and show

that every fixed point of T is a Nash Equilibrium. Using the Brouwer

fixed point theorem, it then follows that a Nash equilibrium exists.

Unfortunately, this is still not a very useful way to construct a Nash

equilibrium.

Equation 13 can help lead to Evolutionary Game Theory.



Optimization for Games
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Consider a game in normal form G = (P,Σ, π). We’ll assume that P = {P1, . . . , PN

and Σi = {σi
1, . . . , σ

i
ni
}. If we assume a fixed mixed strategy x ∈ ∆, Player Pi’s

objective when choosing a response xi ∈ ∆ni
is to solve the following problem:

Player Pi :











max ui(x
i,x−i)

s.t. xi
1 + · · ·+ xi

ni
= 1

xi
j ≥ 0 j = 1, . . . , ni

(14)

The interesting part (and the part that makes Game Theory hard) is that each player is

solving this problem simultaneously. Thus an equilibrium solution is a simultaneous

solution to:

∀i :











max ui(x
i,x−i)

s.t. xi
1 + · · ·+ xi

ni
= 1

xi
j ≥ 0 j = 1, . . . , ni

(15)

This leads to an incredibly rich class of problems in mathematical programming.



Linear Programming
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Theorem 27. Let G = (P,Σ,A) be a zero-sum two player game with

A ∈ R
m×n. Then a Nash equilibrium solution for Player 1 is an optimal

solution to:
max v

s.t. A11x1 + · · ·+Am1xm − v ≥ 0

A12x1 + · · ·+Am2xm − v ≥ 0

...

A1nx1 + · · ·+Amnxm − v ≥ 0

x1 + · · ·+ xm − 1 = 0

xi ≥ 0 i = 1, . . . ,m



Linear Programming (2)
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Theorem 28. Let G = (P,Σ,A) be a zero-sum two player game with

A ∈ R
m×n. Then a Nash equilibrium solution for for Player 2 is an

optimal solution to:

min ν

s.t. A11y1 + · · · +A1nyn − ν ≤ 0

A21y1 + · · · +A2nyn − ν ≤ 0

...

Am1y1 + · · · +Amnyn − ν ≤ 0

y1 + · · · + yn − 1 = 0

yi ≥ 0 i = 1, . . . ,m



Quadratic Programming
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Theorem 29. Let G = (P,Σ,A,B) be a general sum two-player

matrix game with A,B ∈ R
m×n. A point (x∗, y∗) ∈ ∆ is a Nash

equilibrium if and only if there are reals α∗ and β∗ so that

(x∗,y∗, α∗, β∗), is a global maximizer for the quadratic programming

problem:

max xT (A+B)y − α− β

s.t. Ay − α1m ≤ 0

xTB− β1T
n ≤ 0

1T
mx− 1 = 0

1T
ny − 1 = 0

x ≥ 0

y ≥ 0

(16)



Example
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We can find a third Nash equilibrium for the Chicken game using this approach. Recall

we have:

A =

[

0 −1
1 −10

]

B =

[

0 1
−1 −10

]

This yields the QP:


























































max − 20x2y2 − α− β

s.t. − y2 − α ≤ 0

y1 − 10y2 − α ≤ 0

− x2 − β ≤ 0

x1 − 10x2 − β ≤ 0

x1 + x2 = 1

y1 + y2 = 1

x1, x2, y1, y2 ≥ 0

(17)

An optimal solution to this problem is x1 = 0.9, x2 = 0.1, y1 = 0.9, y2 = 0.1. This is

a third Nash equilibrium in mixed strategies for this instance of Chicken.



Linear Complementarity
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It turns out, we can generalize this entire framework into something called a

Linear Complementarity Problem in which we try and find vectors w and z so

that for some matrix M:










w −Mz = −1

wT z = 0

w, z ≥ 0

(18)

Here the matrix M is defined by the A and B matrices and the w and z

vectors can be used to extract strategy vectors x∗ and y∗.

Lemke and Howson proved this result in 1964 and they also proved:

Theorem 30. Let G = (P,Σ,A,B) be a general sum two-player matrix

game. If the game is non-degenerate, then there are an odd number of Nash

equilibria.

This theorem was generalized by Wilson in 1971. “Well behaved” games

have an odd number of Nash equilibria. The study of the computational

complexity of finding Nash equilibria starts here.



Trembling Hand Perfection
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Consider a game G = (P,Σ, π) with Σ = Σ1 × · · · × ΣN . To each pure

Player i strategy σi
j assign a (small) value µij > 0 so that in the corresponding

mixed strategy space we require xij ≥ µij . If µi is the vector of these µij for

Player i, then we may define:

∆ni
(µi) =







[x1, . . . , xni
]T ∈ R

n×1 :

ni
∑

j=1

xj = 1;xj ≥ µij , j = 1, . . . , ni







(19)

Define the game G(µ) to be G were we require all mixed strategies to be

chosen from ∆(µ).

Definition 31. If xµ is a Nash equilibrium in G(µ) and x∗ is a Nash

equilibrium for G and:

lim
µ→0

xµ → x∗
(20)

then x∗ is a trembling hand perfect equilibrium.
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